Interleukin-6 (IL-6) is involved in many inflammatory diseases. IL-6 binds to membrane-bound IL-6 receptor α (IL-6Rα) (classic signaling) or soluble IL-6Rα (trans-signaling); this complex then associates with the signal-transducing membrane protein gp130. IL-6Rα and gp130 float on membrane (i.e., lipid) rafts; however, how membrane rafts regulate IL-6 signaling remains unclear. Here, we demonstrate that both IL-6 classic signaling and trans-signaling depend on membrane cholesterol, an essential raft component. Super-resolution fluorescence imaging using perfringolysin O D4 fragments that selectively bind to high cholesterol concentrations revealed that IL-6 and hyper-IL-6, a fusion protein of IL-6 and soluble IL-6Rα, induce the alteration of membrane rafts. IL-6 and hyper-IL-6 induced D4-positive raft (D4 raft) formation without affecting cholera toxin subunit B (CTB)-positive rafts (CTB rafts). Receptor clustering of IL-6Rα and gp130 and STAT3 phosphorylation occurred in D4 rafts. These results indicate that D4 rafts serve as platforms for the assembly of functional IL-6 receptor complexes. We found that Eps15 homology domain-containing protein 1 (EHD1) mediates the formation of functional IL-6 receptor complexes through D4 rafts. Overall, we uncover a novel regulatory mechanism of the EHD1-mediated alteration of membrane raft in IL-6 signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.16458 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!