Objectives: SARS-CoV-2 can cause respiratory diseases with various manifestations. However, little is known about its potential for lung recovery. Lung ultrasound has shown characteristic changes during COVID-19 and has proven to be useful for triage, diagnosis, and therapy. This study investigated how the recovery process from COVID-19 respiratory disease can be monitored using 12-zone lung ultrasound.
Methods: This prospective observational cohort study was conducted in a busy urban emergency department in London, United Kingdom, over a 20-week period between April and October 2020. We followed 24 patients recovering from COVID-19 with varying disease severity using 12-zone lung ultrasound at 2-week intervals and monitored the changes in the prevalence of lung abnormalities previously described in COVID-19 infection (irregular pleura, subpleural consolidation, B-lines, and small localized effusions).
Results: Lung ultrasound showed that the lung recovers significantly over 20 weeks postdisease. Individual lung abnormalities also resolved at different rates. The entire rib space occupied by confluent B-lines wane after the acute phase, whereas irregular pleura and subpleural consolidations resolved more gradually. Separate wide B-lines moving with the pleura during respiration may represent more stable features, indicating residual fibrotic changes. Small, localized effusions appear transiently after the initial acute phase of the disease, peaking at approximately 10 weeks after infection. The measured lung abnormalities were strong predictors of perceived shortness of breath during ambulation.
Conclusion: Lung ultrasound can be a useful tool for long-term monitoring of COVID-19 lung disease, avoiding repeated exposure to ionizing radiation, and may distinguish between acute and past infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088416 | PMC |
http://dx.doi.org/10.1002/jum.15990 | DOI Listing |
Adv Rheumatol
January 2025
Division of Rheumatology, Department of Internal Medicine, Kocaeli University Faculty of Medicine, İzmit, Kocaeli, 41380, Turkey.
Background: The clinical manifestations and course of rheumatoid arthritis-associated interstitial lung disease (RA-ILD) exhibits considerable heterogeneity. In this study, we aimed to explore radiographic progression over a defined period, employing the Warrick score as a semi-quantitative measure in early RA-ILD, and to assess the associated risk factors for progression.
Methods: RA-ILD patients underwent consecutive Warrick scoring based on initial high-resolution computed tomography (HRCT) at diagnosis and the first follow-up.
Eur Radiol
January 2025
Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.
Objectives: To conduct a meta-analysis of the diagnostic performance of non-contrast magnetic resonance pulmonary angiography (NC-MRPA) and ventilation-perfusion (V/Q) scintigraphy for the detection of acute pulmonary embolism (PE).
Materials And Methods: Systematic searches of electronic databases were conducted from 2000 to 2024. Primary outcomes were per-patient sensitivity and specificity of NC-MRPA and V/Q scintigraphy.
BMJ Open
January 2025
Centre for Cancer Screening, Prevention and Early Diagnosis, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
Background: Worldwide, lung cancer (LC) is the second most frequent cancer and the leading cause of cancer related mortality. Low-dose CT (LDCT) screening reduced LC mortality by 20-24% in randomised trials of high-risk populations. A significant proportion of those screened have nodules detected that are found to be benign.
View Article and Find Full Text PDFRadiol Clin North Am
March 2025
Department of Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA; Department of Pediatrics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA. Electronic address:
Pulmonary vascular diseases, particularly when accompanied by pulmonary hypertension, are complex disorders often requiring multimodal imaging for diagnosis and monitoring. Echocardiography is the primary screening tool for pulmonary hypertension, while cardiac MR imaging (CMR) is used for more detailed characterization and risk stratification in right ventricular failure. Chest computed tomography (CT) is used to detect vascular anomalies and parenchymal lung diseases.
View Article and Find Full Text PDFRadiol Clin North Am
March 2025
Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
Pediatric patients are affected by a wide variety of pulmonary vascular diseases ranging from congenital anomalies diagnosed at birth to acquired diseases that present later in childhood and into adolescence. While some pulmonary vascular diseases present similarly to those seen in adults, other forms are unique to children. Knowledge of the characteristic imaging features of these diseases is essential to facilitate prompt diagnosis and guide clinical management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!