A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In silico prediction of potential drug-induced nephrotoxicity with machine learning methods. | LitMetric

In silico prediction of potential drug-induced nephrotoxicity with machine learning methods.

J Appl Toxicol

Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.

Published: October 2022

In recent years, drug-induced nephrotoxicity has been one of the main reasons for the failure of drug development. Early prediction of the nephrotoxicity for drug candidates is critical to the success of clinical trials. Therefore, it is very important to construct an effective model that can predict the potential nephrotoxicity of compounds. Machine learning methods have been widely used to predict the physicochemical properties, biological activities, and safety assessment of compounds. In this study, we manually collected 777 valid drug data and constructed a total of 72 classification models using nine types of molecular fingerprints combined with different machine learning algorithms. From experimental literature and the US FDA Drugs Database, some marketed drugs were screened for external validation of the models. Finally, three models exhibited good performance in the prediction of nephrotoxicity of both chemical drugs and Chinese herbal medicines. The best model was the support vector machine algorithm combined with CDK graph only fingerprint. Furthermore, the applicability domain of the models was analyzed according to the OECD principles, and we also used the SARpy and information gain methods to find eight substructures that might cause nephrotoxicity, so as to attract attention in the future drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.4331DOI Listing

Publication Analysis

Top Keywords

machine learning
12
drug-induced nephrotoxicity
8
learning methods
8
prediction nephrotoxicity
8
nephrotoxicity
6
silico prediction
4
prediction potential
4
potential drug-induced
4
machine
4
nephrotoxicity machine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!