Purpose: Ipatasertib, a potent and highly selective small-molecule inhibitor of AKT, is currently under investigation for treatment of cancer. Ipatasertib is a substrate and a time-dependent inhibitor of CYP3A4. It exhibits non-linear pharmacokinetics at subclinical doses in the clinical dose escalation study. To assess the DDI risk of ipatasertib at the intended clinical dose of 400 mg with CYP3A4 inhibitors, inducers, and substrates, a fit-for-purpose physiologically based pharmacokinetic (PBPK) model of ipatasertib was developed.

Methods: The PBPK model was constructed in Simcyp using in silico, in vitro, and clinical data and was optimized and verified using clinical data.

Results: The PBPK model described non-linear pharmacokinetics of ipatasertib and captured the magnitude of the observed clinical DDIs. Following repeated doses of 400 mg ipatasertib once daily (QD), the PBPK model predicted a 3.3-fold increase of ipatasertib exposure with itraconazole; a 2-2.5-fold increase with moderate CYP3A4 inhibitors, erythromycin and diltiazem; and no change with a weak CYP3A4 inhibitor, fluvoxamine. Additionally, in the presence of strong or moderate CYP3A4 inducers, rifampicin and efavirenz, ipatasertib exposures were predicted to decrease by 86% and 74%, respectively. As a perpetrator, the model predicted that ipatasertib (400 mg) caused a 1.7-fold increase in midazolam exposure.

Conclusion: This study demonstrates the value of using a fit-for-purpose PBPK model to assess the clinical DDIs for ipatasertib and to provide dosing strategies for the concurrent use of other CYP3A4 perpetrators or victims.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054915PMC
http://dx.doi.org/10.1007/s00280-022-04434-2DOI Listing

Publication Analysis

Top Keywords

pbpk model
20
ipatasertib
11
fit-for-purpose physiologically
8
physiologically based
8
based pharmacokinetic
8
non-linear pharmacokinetics
8
clinical dose
8
cyp3a4 inhibitors
8
clinical ddis
8
model predicted
8

Similar Publications

Understanding cytokine-related therapeutic protein-drug interactions (TP-DI) is crucial for effective medication management in conditions characterized by elevated inflammatory responses. Recent FDA and ICH guidelines highlight a systematic, risk-based approach for evaluating these interactions, emphasizing the need for a thorough mechanistic understanding of TP-DIs. This study integrates the physiologically based pharmacokinetic (PBPK) model for TP (specifically interleukin-6, IL-6) with small-molecule drug PBPK models to elucidate cytokine-related TP-DI mechanistically.

View Article and Find Full Text PDF

Physiologically based Pharmacokinetic/Pharmacodynamic Modeling (PBPK/PD) of Famotidine in Pregnancy.

J Clin Pharmacol

January 2025

Bayer HealthCare SAS, Lille, France, on behalf of:, Model-Informed Drug Development, Research and Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany.

Famotidine, a H-receptor antagonist, is commonly used to treat heartburn and gastroesophageal reflux disease during pregnancy. However, information on the pharmacokinetics (PK) of famotidine in pregnant patients is limited since pregnant patients are usually excluded from clinical trials. This study aimed to develop and evaluate a physiologically based pharmacokinetic (PBPK) model for famotidine in non-pregnant and pregnant populations, and to combine it with a pharmacodynamic (PD) model to predict the effect of famotidine on intragastric pH.

View Article and Find Full Text PDF

Physiologically-based pharmacokinetic modeling to predict the exposure and provide dosage regimens of tacrolimus in pregnant women with infection disease.

Eur J Pharm Sci

January 2025

Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China. Electronic address:

Tacrolimus is extensively used for the prevention of graft rejection following solid organ transplantation in pregnant women. However, knowledge gaps in the dosage of tacrolimus for pregnant patients with different CYP3A5 genotypes and infection conditions have been identified. This study aimed to develop a pregnant physiologically based pharmacokinetic (PBPK) model to characterize the maternal and fetal pharmacokinetics of tacrolimus during pregnancy and explore and provide dosage adjustments.

View Article and Find Full Text PDF

Digital twins, driven by data and mathematical modelling, have emerged as powerful tools for simulating complex biological systems. In this work, we focus on modelling the clearance on a liver-on-chip as a digital twin that closely mimics the clearance functionality of the human liver. Our approach involves the creation of a compartmental physiological model of the liver using ordinary differential equations (ODEs) to estimate pharmacokinetic (PK) parameters related to on-chip liver clearance.

View Article and Find Full Text PDF

Arsenic accumulation and reproductive toxicity in freshwater snail (Pomacea canaliculata).

Ecotoxicol Environ Saf

January 2025

Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:

This study aimed to investigate the tissue-specific accumulation patterns of arsenic (As) and the potential toxicological effects of As on the oviposition of a globally distributed aquatic invertebrate, the apple snail (Pomacea canaliculata). An eight-compartment physiologically based pharmacokinetic (PBPK) model was utilized to simulate the distribution and depuration kinetics of arsenite and arsenate in the snails. Modeling and biotransformation suggested that intestine-stomach was the main uptake site for As and plays an important role in maintaining the balance of As species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!