The development of a new dynamic lattice element method (dynamicLEM) as well as its application in the simulation of the propagation of body waves in discontinuous and heterogeneous media is the focus of this research paper. The conventional static lattice models are efficient numerical methods to simulate crack initiation and propagation in cemented geomaterials. The advantages of the LEM and the developed dynamic solution, such as simulation of arbitrary crack initiation and propagation, illustration and simulation of existing inherent material heterogeneity as well as stress redistribution upon crack opening, opens a new engineering field and tool for material analysis. To realize the time dependency of the dynamic LEM, the equation of motion of forced vibration is solved while using the Newmark-[Formula: see text] method and implementing the non-linear Newton-Raphson Jacobian method. The method validation is done according to the results of a boundary element method (BEM) in the plane P-SV-wave propagation within a plane strain domain. Further tests comparing the generated wave types, simulation and study of crack discontinuities as well as inherent heterogeneities in the geomaterials are conducted to illustrate the accurate applicability of the new dynamic lattice method. The results indicate that with increasing heterogeneity within the material, the wave field becomes significantly scattered and further analysis of wave fields according to the wavelength/heterogeneity ratio become indispensable. Therefore, in a heterogeneous medium, the application of continuum methods in relation to structural health monitoring should be precisely investigated and improved. The developed dynamic lattice element method is an ideal simulation tool to consider particle scale irregularities, crack distributions and inherent material heterogeneities and can be easily implemented in various engineering applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012874 | PMC |
http://dx.doi.org/10.1038/s41598-022-10381-y | DOI Listing |
Small
March 2025
College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China.
Overcoming the challenges of integrating disparate components in nanoarchitectures, this study introduces a straightforward strategy based on a mixed-valence coordination approach, creating an ordered ternary heterostructure integrated with ultrasmall homojunction. This singular ordered homojunction-heterostructure unites ultrathin 1D rutile TiO nanowires (NWs) and ultrathin anatase TiO NWs with 0D Prussian Blue Analogs (PBAs) nanoparticles (NPs), all exhibiting crystallographic oriented alignment with each other, forming a ternary mesocrystals. Experimental and theoretical insights disclose that the complex interplay between these dissimilar components is governed by a spontaneous lattice match effect, which not only optimizes but also directs the charge transfer, thereby enhancing both efficiency and stability.
View Article and Find Full Text PDFMolecules
March 2025
Natural Science Department, LaGuardia Community College, City University of New York, 31-10 Thomson Ave, Long Island City, NY 11101, USA.
We investigate the molecular dynamics of glycolide/lactide/caprolactone (Gly/Lac/Cap) copolymers using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), H second-moment, H spin-lattice relaxation time (T) analysis, and C solid-state NMR over a temperature range of 100-413 K. Activation energies and correlation times of the biopolymer chains were determined. At low temperatures, relaxation is governed by the anisotropic threefold reorientation of methyl (-CH) groups in lactide.
View Article and Find Full Text PDFSci Rep
March 2025
New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran.
The study investigated the effects of Sr-doping on BaTiO₃ regarding the mean square displacement, diffusion coefficient, polarization-strain response, dielectric constant, and dielectric loss. Initially, increasing strontium doping up to 6% enhanced the mean square displacement (from 0.211 to 0.
View Article and Find Full Text PDFAdv Sci (Weinh)
March 2025
College of Textiles, Donghua University, Shanghai, 201620, China.
Transition metal and metal oxide heterojunctions have been widely studied as bifunctional oxygen reduction/evolution reaction (ORR/OER) electrocatalysts for Zn-air batteries, but the dynamic changes of transition metal oxides and the interface during catalysis are still unclear. Here, bifunctional electrocatalyst of Co─CoNbO is reported, containing lattice interlocked Co nanodots and CoNbO nanorods, which construct a strong metal-support interaction (SMSI) interface. Unlike the recognition that transition metals mainly serve as ORR active sites and metal oxides as OER active sites, it is found that both ORR/OER sites originate from CoNbO, while Co acts as an electronic regulatory unit.
View Article and Find Full Text PDFNat Commun
March 2025
Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
A critical feature of microtubules is their GTP cap, a stabilizing GTP-tubulin rich region at growing microtubule ends. Microtubules polymerized in the presence of GTP analogs or from GTP hydrolysis-deficient tubulin mutants have been used as GTP-cap mimics for structural and biochemical studies. However, these analogs and mutants generate microtubules with diverse biochemical properties and lattice structures, leaving it unclear what is the most faithful GTP mimic and hence the structure of the GTP cap.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!