Optimization of intraperitoneal aerosolized drug delivery using computational fluid dynamics (CFD) modeling.

Sci Rep

Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, route 1275, 9000, Ghent, Belgium.

Published: April 2022

Intraperitoneal (IP) aerosolized anticancer drug delivery was recently introduced in the treatment of patients with peritoneal metastases. However, little is known on the effect of treatment parameters on the spatial distribution of the aerosol droplets in the peritoneal cavity. Here, computational fluid dynamics (CFD) modeling was used in conjunction with experimental validation in order to investigate the effect of droplet size, liquid flow rate and viscosity, and the addition of an electrostatic field on the homogeneity of IP aerosol. We found that spatial distribution is optimal with small droplet sizes (1-5 µm). Using the current clinically used technology (droplet size of 30 µm), the optimal spatial distribution of aerosol is obtained with a liquid flow rate of 0.6 mL s. Compared to saline, nebulization of higher viscosity liquids results in less homogeneous aerosol distribution. The addition of electrostatic precipitation significantly improves homogeneity of aerosol distribution, but no further improvement is obtained with voltages higher than 6.5 kV. The results of the current study will allow to choose treatment parameters and settings in order to optimize spatial distribution of IP aerosolized drug, with a potential to enhance its anticancer effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012796PMC
http://dx.doi.org/10.1038/s41598-022-10369-8DOI Listing

Publication Analysis

Top Keywords

spatial distribution
16
intraperitoneal aerosolized
8
aerosolized drug
8
drug delivery
8
computational fluid
8
fluid dynamics
8
dynamics cfd
8
cfd modeling
8
treatment parameters
8
distribution aerosol
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!