Neutropenic fever (NF) is a common complication of chemotherapy in patients with cancer which often prolongs hospitalization and worsens the quality of life. Although an empiric antimicrobial approach is used to prevent and treat NF, a clear etiology cannot be found in most cases. Emerging data suggest an altered microbiota-host crosstalk leading to NF. We profiled the serum metabolome and gut microbiome in longitudinal samples before and after NF in patients with acute myeloid leukemia, a prototype setting with a high incidence of NF. We identified a circulating metabolomic shift after NF, with a minimal signature containing 18 metabolites, 13 of which were associated with the gut microbiota. Among these metabolites were markers of intestinal epithelial health and bacterial metabolites of dietary tryptophan with known anti-inflammatory and gut-protective effects. The level of these metabolites decreased after NF, in parallel with biologically consistent changes in the abundance of mucolytic and butyrogenic bacteria with known effects on the intestinal epithelium. Together, our findings indicate a metabolomic shift with NF which is primarily characterized by a loss of microbiota-derived protective metabolites rather than an increase in detrimental metabolites. This analysis suggests that the current antimicrobial approach to NF may need a revision to protect the commensal microbiota.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012881 | PMC |
http://dx.doi.org/10.1038/s41598-022-10282-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!