The characterization and identification of the dynamics of cluster catalysis are crucial to unraveling the origin of catalytic activity. However, the dynamical catalytic effects during the reaction process remain unclear. Herein, we investigate the dynamic coupling effect of elementary reactions with the structural fluctuations of sub-nanometer Au clusters with different sizes using ab initio molecular dynamics and the free energy calculation method. It was found that the adsorption-induced solid-to-liquid phase transitions of the cluster catalysts give rise to abnormal entropy increase, facilitating the proceeding of reaction, and this phase transition catalysis exists in a range of clusters with different sizes. Moreover, clusters with different sizes show different transition temperatures, resulting in a non-trivial size effect. These results unveil the dynamic effect of catalysts and help understand cluster catalysis to design better catalysts rationally.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0084165 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!