Cooperation and competition between pathogens can alter the amount of individuals affected by a coinfection. Nonetheless, the evolution of the pathogens' behavior has been overlooked. Here, we consider a coevolutionary model where the simultaneous spreading is described by a two-pathogen susceptible-infected-recovered model in an either synergistic or competitive manner. At the end of each epidemic season, the pathogens species reproduce according to their fitness that, in turn, depends on the payoff accumulated during the spreading season in a hawk-and-dove game. This coevolutionary model displays a rich set of features. Specifically, the evolution of the pathogens' strategy induces abrupt transitions in the epidemic prevalence. Furthermore, we observe that the long-term dynamics results in a single, surviving pathogen species, and that the cooperative behavior of pathogens can emerge even under unfavorable conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.105.034308 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, The University of Hong Kong, Hong Kong Island 000000, Hong Kong SAR, China.
Methanol (ME) is a liquid hydrogen carrier, ideal for on-site-on-demand H generation, avoiding its costly and risky distribution issues, but this "ME-to-H" electric conversion suffers from high voltage (energy consumption) and competitive oxygen evolution reaction. Herein, we demonstrate that a synergistic cofunctional PtPd/(Ni,Co)(OH) catalyst with Pt single atoms (Pt) and Pd nanoclusters (Pd) anchored on OH-vacancy(V)-rich (Ni,Co)(OH) nanoparticles create synergistic triadic active sites, allowing for methanol-enhanced low-voltage H generation. For MOR, OH* is preferentially adsorbed on Pd and then interacts with the intermediates (such as *CHO or *CHOOH) adsorbed favorably on neighboring Pt with the assistance of hydrogen bonding from the surface hydrogen of (Ni,Co)(OH).
View Article and Find Full Text PDFTrends Microbiol
January 2025
Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, UK; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK. Electronic address:
Within both abiotic and host environments, bacteria typically exist as diverse, multispecies communities and have crucial roles in human health, agriculture, and industry. In these communities, bacteria compete for resources, and these competitive interactions can shape the overall population structure and community function. Studying bacterial community dynamics requires experimental model systems that capture the different interaction networks between bacteria and their surroundings.
View Article and Find Full Text PDFCytokine
February 2025
Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai 603103, Tamil Nadu, India. Electronic address:
Macrophages are highly variable immune cells that are important in controlling inflammation and maintaining tissue balance. The ability to polarize into two major types-M1, promoting inflammation, and M2, resolving inflammation and contributing to tissue repair-determines their specific roles in health and disease. M2 macrophages are particularly important for reducing inflammation and promoting tissue regeneration, but their function is shaped mainly by surrounding cells.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Civil and Environmental Engineering, School of Environment and Society, Institute of Science Tokyo, Meguro-ku, Tokyo, 152-8552, Japan.
The treatment of antibiotic wastewater often faces the challenge of simultaneously and effectively degrading multiple components under complex conditions. To address this challenge, magnetite nanoparticles doped ultrafine activated charcoal powder (MNPs/UACP), which effectively catalyzed the decomposition of HO into •OH and HO•, was prepared using chemical co-precipitation. Under optimum conditions (i.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga 29071, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!