A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Solution to the Fokker-Planck equation for slowly driven Brownian motion: Emergent geometry and a formula for the corresponding thermodynamic metric. | LitMetric

Considerable progress has recently been made with geometrical approaches to understanding and controlling small out-of-equilibrium systems, but a mathematically rigorous foundation for these methods has been lacking. Towards this end, we develop a perturbative solution to the Fokker-Planck equation for one-dimensional driven Brownian motion in the overdamped limit enabled by the spectral properties of the corresponding single-particle Schrödinger operator. The perturbation theory is in powers of the inverse characteristic timescale of variation of the fastest varying control parameter, measured in units of the system timescale, which is set by the smallest eigenvalue of the corresponding Schrödinger operator. It applies to any Brownian system for which the Schrödinger operator has a confining potential. We use the theory to rigorously derive an exact formula for a Riemannian "thermodynamic" metric in the space of control parameters of the system. We show that up to second-order terms in the perturbation theory, optimal dissipation-minimizing driving protocols minimize the length defined by this metric. We also show that a previously proposed metric is calculable from our exact formula with corrections that are exponentially suppressed in a characteristic length scale. We illustrate our formula using the two-dimensional example of a harmonic oscillator with time-dependent spring constant in a time-dependent electric field. Lastly, we demonstrate that the Riemannian geometric structure of the optimal control problem is emergent; it derives from the form of the perturbative expansion for the probability density and persists to all orders of the expansion.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.105.034130DOI Listing

Publication Analysis

Top Keywords

schrödinger operator
12
solution fokker-planck
8
fokker-planck equation for
8
driven brownian
8
brownian motion
8
perturbation theory
8
exact formula
8
equation for slowly
4
slowly driven
4
motion emergent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!