Effects of measures on phase transitions in two cooperative susceptible-infectious-recovered dynamics.

Phys Rev E

Department of Physics, Sharif University of Technology, Tehran, Iran and Chair for Network Dynamics, Institute for Theoretical Physics and Center for Advancing Electronics Dresden (cfaed), Technical University of Dresden, 01062 Dresden, Germany.

Published: March 2022

In recent studies, it has been shown that a cooperative interaction in a co-infection spread can lead to a discontinuous transition at a decreased threshold. Here, we investigate the effects of immunization with a rate proportional to the extent of the infection on phase transitions of a cooperative co-infection. We use the mean-field approximation to illustrate how measures that remove a portion of the susceptible compartment, like vaccination, with high enough rates can change discontinuous transitions in two coupled susceptible-infectious-recovered dynamics into continuous ones while increasing the threshold of transitions. First, we introduce vaccination with a fixed rate into a symmetric spread of two diseases and investigate the numerical results. Second, we set the rate of measures proportional to the size of the infectious compartment and scrutinize the dynamics. We solve the equations numerically and analytically and probe the transitions for a wide range of parameters. We also determine transition points from the analytical solutions. Third, we adopt a heterogeneous mean-field approach to include heterogeneity and asymmetry in the dynamics and see if the results corresponding to homogeneous symmetric case stand.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.105.034311DOI Listing

Publication Analysis

Top Keywords

phase transitions
8
transitions cooperative
8
susceptible-infectious-recovered dynamics
8
transitions
5
effects measures
4
measures phase
4
cooperative susceptible-infectious-recovered
4
dynamics
4
dynamics studies
4
studies cooperative
4

Similar Publications

Generosity through donation plays a crucial role in reducing inequality and influencing human behavior. However, previous research on donation has overlooked individuals' acceptance of the extent of inequality, which acts as a trigger for donation. To address this gap, this paper systematically explores the impact of donation based on inequality tolerance on the evolution of cooperation in spatial public goods game.

View Article and Find Full Text PDF

Understanding the Topology Freezing Temperature of Vitrimer-Like Materials through Complementary Structural and Rheological Analyses for Phase-Separated Network.

ACS Macro Lett

January 2025

Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi 466-8555, Japan.

Vitrimers are sustainable cross-linked polymers characterized by an associative bond exchange mechanism within their network. A well-known feature of vitrimers is the Arrhenius dependence of the viscosity or relaxation time. Another important aspect is the existence of a topology-freezing temperature (), which represents a transition between the viscoelastic solid state and the malleable viscoelastic liquid state.

View Article and Find Full Text PDF

A novel ternary boride, NiPtB ( = 0.5), was obtained by argon-arc melting of the elements followed by annealing at 750 °C. It exhibits a new structure type with the space group ( = 2.

View Article and Find Full Text PDF

The isomerization kinetics of a liquid crystalline azobenzene dimer, comprising cyanoazobenzene and naphthalene (NAZ6), were investigated at the air-water interface. The Langmuir monolayers of NAZ6 in both its and states were analyzed using surface manometry techniques. The results revealed that NAZ6 molecules in the -state displayed the coexistence of a disordered liquid-expanded phase and an ordered liquid-condensed phase, whereas no such phase transition was observed in the -state.

View Article and Find Full Text PDF

We analyzed the thermal, structural, and dynamic properties of maghemite using classical molecular dynamics, focusing on bulk and nanoparticle systems. We explored their behavior when heated to high temperatures (above the melting point) and during cooling, as well as under thermal cycles ending at intermediate temperatures. Our findings show that in the bulk system, both the tetrahedral and octahedral iron sub-lattices undergo a phase transition prior to melting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!