The current filamentation instability, which generically arises in the counterstreaming of plasma flows, is known for its ability to convert the free energy associated with anisotropic momentum distributions into kinetic-scale magnetic fields. The saturation of this instability has been extensively studied in symmetric configurations where the interpenetrating plasmas share the same properties (velocity, density, temperature). In many physical settings, however, the most common configuration is that of asymmetric plasma flows. For instance, the precursor of relativistic collisionless shock waves involves a hot, dilute beam of accelerated particles reflected at the shock front and a cold, dense inflowing background plasma. To determine the appropriate criterion for saturation in this case, we have performed large-scale two-dimensional particle-in-cell simulations of counterstreaming electron-positron pair and electron-ion plasmas. We show that, in interpenetrating pair plasmas, the relevant criterion is that of magnetic trapping as applied to the component (beam or plasma) that carries the larger inertia of the two; namely, the instability growth suddenly slows down once the quiver frequency of those particles equals or exceeds the instability growth rate. We present theoretical approximations for the saturation level. These findings remain valid for electron-ion plasmas provided that electrons and ions are close to equipartition in the plasma flow of larger inertia. Our results can be directly applied to the physics of relativistic, weakly magnetized shock waves, but they can also be generalized to other cases of study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.105.035202 | DOI Listing |
J Oleo Sci
January 2025
Botany and Microbiology Department, Faculty of Science, King Saud University.
The present study aimed to explore the potential of macroalgal hydrolysate to serve as an economical substrate for the growth of the oleaginous microbes Aspergillus sp. SY-70, Rhizopus arrhizus SY-71 and Aurantiochytrium sp. YB-05 for lipid and DHA production under laboratory conditions.
View Article and Find Full Text PDFVirology
January 2025
LKC School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Republic of Singapore.
Respiratory syncytial virus (RSV) particle assembly occurs on the surface of infected cells at specialized membrane domain called lipid rafts. The mature RSV particles assemble as filamentous projections called virus filaments, and these structures form on the surface of many permissive cell types indicating that this is a robust feature of the RSV particle assembly. The virus filaments also form on nasal airway organoids systems providing evidence that these structures also have a clinical relevance.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary.
This study attempted to isolate and identify pedospheric microbes originating in dumpsites and utilized them for the degradation of selected synthetic polymers for the first time in a cost-effective, ecologically favorable and sustainable manner. Specifically, low-density polyethylene (LDPE) and polyurethane (PUR) were converted by the isolated fungi, i.e.
View Article and Find Full Text PDFChem Biodivers
January 2025
Zhejiang University, Polytechnic Institute, 866 Yuhangtang Road, Hangzhou, CHINA.
Filamentous fungi are of great interest due to their powerful metabolic capabilities and potentials to produce abundant various secondary metabolites as natural products (NPs), some of which have been developed into pharmaceuticals. Furthermore, high-throughput genome sequencing has revealed tremendous cryptic NPs underexplored. Based on the development of in silico genome mining, various techniques have been introduced to rationally modify filamentous fungi,awakening the silent biosynthetic gene clusters (BGCs) and visualizing the NPs originally cryptic.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2025
Max Planck Institute for Biology Tübingen, Max-Planck Ring 5, Tuebingen, Germany, 72076;
Filamentous plant pathogens pose a severe threat to food security. Current estimates suggest up to 23% yield losses to pre- and post-harvest diseases and these losses are projected to increase due to climate change (Singh et al. 2023; Chaloner et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!