We study the dynamics and statistics of the Rule 150 reversible cellular automaton (RCA). This is a one-dimensional lattice system of binary variables with synchronous (Floquet) dynamics that corresponds to a bulk deterministic and reversible discretized version of the kinetically constrained "exclusive one-spin facilitated" (XOR) Fredrickson-Andersen (FA) model, where the local dynamics is restricted: A site flips if and only if its adjacent sites are in different states from each other. Similar to other RCA that have been recently studied, such as Rule 54 and Rule 201, the Rule 150 RCA is integrable, however, in contrast is noninteracting: The emergent quasiparticles, which are identified by the domain walls, behave as free fermions. This property allows us to solve the model by means of matrix product ansatz. In particular, we find the exact equilibrium and nonequilibrium stationary states for systems with closed (periodic) and open (stochastic) boundaries, respectively, resolve the full spectrum of the time evolution operator and, therefore, gain access to the relaxation dynamics, and obtain the exact large deviation statistics of dynamical observables in the long-time limit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.105.034124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!