Oncogenic fusion proteins and their role in three-dimensional chromatin structure, phase separation, and cancer.

Curr Opin Genet Dev

Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA. Electronic address:

Published: June 2022

Three-dimensional (3D) chromatin structure plays a critical role in development, gene regulation, and cellular identity. Alterations to this structure can have profound effects on cellular phenotypes and have been associated with a variety of diseases including multiple types of cancer. One of several forces that help shape 3D chromatin structure is liquid-liquid phase separation, a form of self-association between biomolecules that can sequester regions of chromatin into subnuclear droplets or even membraneless organelles like nucleoli. This review focuses on a class of oncogenic fusion proteins that appear to exert their oncogenic function via phase-separation-driven alterations to 3D chromatin structure. Here, we review what is known about the mechanisms by which these oncogenic fusion proteins phase separate in the nucleus and their role in shaping the 3D chromatin structure. We discuss the potential for this phenomenon to be a more widespread mechanism of oncogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9156545PMC
http://dx.doi.org/10.1016/j.gde.2022.101901DOI Listing

Publication Analysis

Top Keywords

chromatin structure
20
oncogenic fusion
12
fusion proteins
12
three-dimensional chromatin
8
phase separation
8
chromatin
6
structure
6
oncogenic
4
proteins role
4
role three-dimensional
4

Similar Publications

Two unrelated distal genes activated by a shared enhancer benefit from localizing inside the same small topological domain.

Genes Dev

January 2025

Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands;

Enhancers are tissue-specific regulatory DNA elements that can activate transcription of genes over distance. Their target genes most often are located in the same contact domain-chromosomal entities formed by cohesin DNA loop extrusion and typically flanked by CTCF-bound boundaries. Enhancers shared by multiple unrelated genes are underexplored but may be more common than anticipated.

View Article and Find Full Text PDF

The genus Pelomyxa includes 15 species of anaerobic Archamoebae with remarkable diverse nucleoplasm morphology. Nuclear structures, like chromatin and nucleoli, of several members of the genus was previously identified only based on their ultrastructural similarity to typical structures of somatic cells of higher eukaryotes. Here, we explored an easy-to-use, one-step intravital staining method with DAPI and pyronin to distinguish between DNA and RNA structures in nuclei of unfixed cells of Pelomyxa belevskii and P.

View Article and Find Full Text PDF

Nucleosome repositioning is essential for establishing nucleosome-depleted regions (NDRs) to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogenously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.

View Article and Find Full Text PDF

Gene syntax-the order and arrangement of genes and their regulatory elements-shapes the dynamic coordination of both natural and synthetic gene circuits. Transcription at one locus profoundly impacts the transcription of nearby adjacent genes, but the molecular basis of this effect remains poorly understood. Here, using integrated reporter circuits in human cells, we show that supercoiling-mediated feedback regulates expression of adjacent genes in a syntax-specific manner.

View Article and Find Full Text PDF

The formation of condensed heterochromatin is critical for establishing cell-specific transcriptional programs. To reveal structural transitions underlying heterochromatin formation in maturing mouse rod photoreceptors, we apply cryo-EM tomography, AI-assisted deep denoising, and molecular modeling. We find that chromatin isolated from immature retina cells contains many closely apposed nucleosomes with extremely short or absent nucleosome linkers, which are inconsistent with the typical two-start zigzag chromatin folding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!