Axon guidance proteins are essential for axonal pathfinding during development. In adulthood, they have been described as pleiotropic proteins with multiple roles in different organs and tissues. While most studies on the roles of these proteins in the cornea have been performed on the Semaphorin family members, with few reports on Netrins or Ephrins, their function in corneal epithelium wound healing and functional nerve regeneration is largely unknown. Here, we studied the expression of ligands belonging to three distinct axon guidance families (Semaphorins, Ephrins, and Netrins) and their most commonly associated receptors in the cornea and trigeminal ganglia (TG) using immunofluorescence staining and RT-qPCR. We also evaluated how their expression recovers after corneal epithelium injury. We found that all ligands studied (Sema3A, Sema3F, EphrinB1, EphrinB2, Netrin-1, and Netrin-4) are abundantly expressed in both the TG and corneal epithelium. Similarly, their receptors (Neuropilin-1, Neuropilin-2, PlexinA1, PlexinA3, EphB2, EphB4, Neogenin, UNC5H1 and DCC) are also expressed in both tissues. Upon corneal epithelium injury, quick recovery of both ligands and receptors was observed at the protein and gene expression levels. While the timing and expression levels vary among these proteins, in general, most of them remained upregulated for several weeks after injury. We propose that the initial protein expression recovery may be related to corneal epithelium recovery since Sema3A, EphrinB2 and Netrin-4 accelerated corneal epithelial cells wound healing. The sustained high expression levels may be functionally related to nerve regeneration and/or patterning. Whilst further studies are required to test this hypothesis, this work contributes to unraveling their function in normal and injured cornea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133167PMC
http://dx.doi.org/10.1016/j.exer.2022.109054DOI Listing

Publication Analysis

Top Keywords

corneal epithelium
24
axon guidance
12
epithelium injury
12
expression levels
12
ligands receptors
8
receptors cornea
8
cornea trigeminal
8
trigeminal ganglia
8
recovery corneal
8
wound healing
8

Similar Publications

Isolation of the feline herpesvirus-1 modified live vaccine strain F2 from one of four cats with dendritic ulcers.

J Feline Med Surg

January 2025

Environmental Science for Sustainable Development, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.

Objectives: To investigate the pathogenicity of feline herpesvirus-1 (FHV-1) to the cornea, FHV-1 strains isolated from feline eyes with dendritic ulcers were subjected to genomic analysis to determine whether FHV-1 vaccine strains are involved in the formation of dendritic ulcers.

Methods: All open reading frame (ORF) sequences of the three F2 strains (Virbac, Intervet and Merial) and the FHV-1 clinical isolates from cats registered in GenBank were compared to detect nucleotide variants unique to the F2 strains, with those nucleotides then being used for simple genotyping of the F2 strains. In all isolates from feline eyes with dendritic ulcers, the regions including nucleotide variants of the F2 strain were amplified with PCR and sequenced.

View Article and Find Full Text PDF

Scientific bodies overseeing UV radiation protection recommend safety limits for exposure to ultraviolet radiation in the workplace based on published peer-reviewed data. To support this goal, a 3D model of the human cornea was used to assess the wavelength dependence of corneal damage induced by UV-C radiation. In the first set of experiments the models were exposed with or without simulated tears; at each wavelength (215-255 nm) cells with DNA dimers and their distribution within the epithelium were measured.

View Article and Find Full Text PDF

In vivo confocal microscopy (IVCM) is a non-invasive imaging technique used to visualize the layers of the cornea and conjunctiva in real time. In patients with atopic keratoconjunctivitis (AKC) and vernal keratoconjunctivitis (VKC), this technology can be useful in diagnosing and monitoring the disease, as well as evaluating the efficacy of treatments. IVCM can reveal subclinical abnormalities in the corneal and conjunctival epithelium such as inflammatory cell infiltrates and tissue damage, which can provide insight into the pathogenesis of AKC.

View Article and Find Full Text PDF

ROS scavenging and corneal epithelial wound healing by a self-crosslinked tissue-adhesive hydrogel based-on dual-functionalized hyaluronic acid.

Int J Biol Macromol

December 2024

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China. Electronic address:

Reactive oxygen species (ROS) scavenging is a viable approach to promote corneal epithelium wound healing. This study created a single-component hydrogel (HA Gel) with a novel dual-functionalized hyaluronic acid derivative (HA-GA-PBA) containing gallol and phenylboronic acid (PBA) moieties. Both of these moieties were dual-functional.

View Article and Find Full Text PDF

The cornea is densely innervated to maintain the integrity of the ocular surface, facilitating functions such as sensation and tear production. Following damage, alterations in the corneal microenvironment can profoundly affect its innervation, potentially impairing healing and sensory perception. One protein frequently upregulated at the ocular surface following tissue damage is galectin-3, but its contribution to corneal nerve regeneration remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!