Pathogenesis of chronic obstructive pulmonary disease: understanding the contributions of gene-environment interactions across the lifespan.

Lancet Respir Med

Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain. Electronic address:

Published: May 2022

AI Article Synopsis

  • Recent research challenges the traditional view of COPD as primarily caused by tobacco smoking in genetically susceptible individuals, suggesting it results from various gene-environment interactions over a person's life.
  • Understanding COPD requires a time-based approach, as the impacts of these interactions can differ depending on the individual’s age and their history of exposures.
  • Future studies should adopt a GETomics framework, integrating genomic and environmental data over time to see COPD as a complex syndrome with chronic symptoms and lung impairments rather than a singular disease.

Article Abstract

The traditional view of chronic obstructive pulmonary disease (COPD) as a self-inflicted disease caused by tobacco smoking in genetically susceptible individuals has been challenged by recent research findings. COPD can instead be understood as the potential end result of the accumulation of gene-environment interactions encountered by an individual over the life course. Integration of a time axis in pathogenic models of COPD is necessary because the biological responses to and clinical consequences of different exposures might vary according to both the age of an individual at which a given gene-environment interaction occurs and the cumulative history of previous gene-environment interactions. Future research should aim to understand the effects of dynamic interactions between genes (G) and the environment (E) by integrating information from basic omics (eg, genomics, epigenomics, proteomics) and clinical omics (eg, phenomics, physiomics, radiomics) with exposures (the exposome) over time (T)-an approach that we refer to as GETomics. In the context of this approach, we argue that COPD should be viewed not as a single disease, but as a clinical syndrome characterised by a recognisable pattern of chronic symptoms and structural or functional impairments due to gene-environment interactions across the lifespan that influence normal lung development and ageing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428195PMC
http://dx.doi.org/10.1016/S2213-2600(21)00555-5DOI Listing

Publication Analysis

Top Keywords

gene-environment interactions
16
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
interactions lifespan
8
gene-environment
5
interactions
5
pathogenesis chronic
4
disease
4
disease understanding
4

Similar Publications

High intraocular pressure (IOP) is an important risk factor for glaucoma, which is influenced by genetic and environmental factors. However, the etiology of high IOP remains uncertain. Metabolites are compounds involved in metabolism which provide a link between the internal (genetic) and external environments.

View Article and Find Full Text PDF

BarH1 regulates the expression of conserved odorant-binding protein 22 from Dastarcus helophoroides.

Insect Biochem Mol Biol

January 2025

Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Chemical signals are pivotal in establishing tritrophic interactions among host plants, herbivorous insects, and natural enemies. Previous studies have shown that evolutionarily conserved MaltOBPs in Monochamus alternatus and DhelOBPs in Dastarcus helophoroides contribute to the establishment of pine -pest - natural enemy tritrophic interactions by recognizing the same volatile emitted by the host during crucial developmental stages. We hypothesized that the transcriptional regulatory mechanisms of evolutionarily conserved OBPs respectively from pests and enemies are similar.

View Article and Find Full Text PDF

Overlooked role of extracellular polymeric substances in antibiotic-resistance gene transfer within microalgae-bacteria system.

J Hazard Mater

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:

Controlling the spread of antibiotic-resistance genes (ARGs) under antibiotic stress has become an increasingly urgent issue. Microalgae possess the capability to remove antibiotics while concurrently inhibiting ARGs. Microalgae-bacteria systems can produce significant quantities of extracellular polymeric substances (EPS).

View Article and Find Full Text PDF

Objectives: Juvenile idiopathic arthritis (JIA) originates from a complex interplay between genetic and environmental factors. We investigated the association between seafood intake and dietary contaminant exposure during pregnancy and JIA risk, to identify sex differences and gene-environment interactions.

Methods: We used the Norwegian Mother, Father, and Child Cohort Study (MoBa), a population-based prospective pregnancy cohort (1999-2008).

View Article and Find Full Text PDF

Machine learning for synthetic gene circuit engineering.

Curr Opin Biotechnol

January 2025

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Synthetic biology leverages engineering principles to program biology with new functions for applications in medicine, energy, food, and the environment. A central aspect of synthetic biology is the creation of synthetic gene circuits - engineered biological circuits capable of performing operations, detecting signals, and regulating cellular functions. Their development involves large design spaces with intricate interactions among circuit components and the host cellular machinery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!