We propose and design a flat optical phased array (OPA) receiver that consists of a grating antenna, a free-propagation region (FPR) incorporating an on-chip metalens concentrator (OCMC), and an output port of a tapered waveguide. By concatenating the OCMC-integrated FPR with the antenna, the proposed OPA allows light coupled at a slanted ψ angle to be conveyed to the output, thereby resolving the challenges of phase-controlled light detection. To impose a space-dependent phase on the incident light from the antenna, the OCMC is constructed by laterally arranging subwavelength slot meta-atoms with varying slot lengths, which are created in the core layer of a slab and uniformly quantized at 16 phase levels. Hence, without the aid of phase modulators, the light beam emerging from the grating antenna can be focused on the output port through angle-tolerant coupling along the lateral direction. The miniaturized OCMC was confirmed to play a pivotal role in achieving enhanced in-plane coupling efficiency over the field of view.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.452895 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!