Dysfunctional cilia cause pleiotropic human diseases termed ciliopathies. These hereditary maladies are often caused by defects in cilia assembly, a complex event that is regulated by the ciliogenesis and planar polarity effector (CPLANE) proteins Wdpcp, Inturned, and Fuzzy. CPLANE proteins are essential for building the cilium and are mutated in multiple ciliopathies, yet their structure and molecular functions remain elusive. Here, we show that mammalian CPLANE proteins comprise a bona fide complex and report the near-atomic resolution structures of the human Wdpcp-Inturned-Fuzzy complex and of the mouse Wdpcp-Inturned-Fuzzy complex bound to the small guanosine triphosphatase Rsg1. Notably, the crescent-shaped CPLANE complex binds phospholipids such as phosphatidylinositol 3-phosphate via multiple modules and a CPLANE ciliopathy mutant exhibits aberrant lipid binding. Our study provides critical structural and functional insights into an enigmatic ciliogenesis-associated complex as well as unexpected molecular rationales for ciliopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012472PMC
http://dx.doi.org/10.1126/sciadv.abn0832DOI Listing

Publication Analysis

Top Keywords

cplane proteins
12
cplane complex
8
wdpcp-inturned-fuzzy complex
8
complex
7
cplane
6
structure ciliogenesis-associated
4
ciliogenesis-associated cplane
4
complex dysfunctional
4
dysfunctional cilia
4
cilia pleiotropic
4

Similar Publications

Cilia are essential organelles and variants in genes governing ciliary function result in ciliopathic diseases. The Ciliogenesis and PLANar polarity Effectors (CPLANE) protein complex is essential for ciliogenesis in animals models but remains poorly defined. Notably, all but one subunit of the CPLANE complex have been implicated in human ciliopathy.

View Article and Find Full Text PDF

CPLANE protein INTU regulates growth and patterning of the mouse lungs through cilia-dependent Hh signaling.

Dev Biol

November 2024

Department of Biology, Eberly College of Science, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA. Electronic address:

Congenital lung malformations are fatal at birth in their severe forms. Prevention and early intervention of these birth defects require a comprehensive understanding of the molecular mechanisms of lung development. We find that the loss of inturned (Intu), a cilia and planar polarity effector gene, severely disrupts growth and branching morphogenesis of the mouse embryonic lungs.

View Article and Find Full Text PDF

Biallelic loss of function variants in FUZ result in an orofaciodigital syndrome.

Eur J Hum Genet

August 2024

Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Orofaciodigital syndrome is a distinctive subtype of skeletal ciliopathies. Disease-causing variants in the genes encoding the CPLANE complex result in a wide variety of skeletal dysplasia with disturbed ciliary functions. The phenotypic spectrum includes orofaciodigital syndrome and short rib polydactyly syndrome.

View Article and Find Full Text PDF

The primary cilium decorates most eukaryotic cells and regulates tissue morphogenesis and maintenance. Structural or functional defects of primary cilium result in ciliopathies, congenital human disorders affecting multiple organs. Pathogenic variants in the ciliogenesis and planar cell polarity effectors (CPLANE) genes FUZZY, INTU and WDPCP disturb ciliogenesis, causing severe ciliopathies in humans and mice.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on the MAC spectrum disease, including microphthalmia, anophthalmia, and coloboma, which are eye malformations that can lead to visual impairment in children due to genetic factors, mainly mutations in genes like OTX2 and SOX2, though many cases remain unexplained.
  • - Researchers utilized the IMPC database to find 74 unique gene knockout lines in mice that are associated with eye defects, discovering many of these lines had not been previously linked to eye development, ultimately identifying 59 genes of interest.
  • - The study highlights the connection between certain genes and protein pathways critical for early eye development, revealing 40 new genes that may play a role in mammalian eye formation,
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!