A method is presented to use atomic force microscopy to measure the cleavage energy of van der Waals materials and similar quasi-two-dimensional materials. The cleavage energy of graphite is measured to be 0.36 J/m, in good agreement with literature data. The same method yields a cleavage energy of 0.6 J/m for MoS as a representative of the dichalcogenides. In the case of the weak topological insulator BiRhI no cleavage energy is obtained, although cleavage is successful with an adapted approach. The cleavage energies of these materials are evaluated by means of density-functional calculations and literature data. This further validates the presented method and sets an upper limit of about 0.7 J/m to the cleavage energy that can be measured by the present setup. In addition, this method can be used as a tool for manipulating exfoliated flakes, prior to or after contacting, which may open a new route for the fabrication of nanostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c04868DOI Listing

Publication Analysis

Top Keywords

cleavage energy
24
atomic force
8
force microscopy
8
literature data
8
cleavage
7
energy
6
determination cleavage
4
energy efficient
4
efficient nanostructuring
4
nanostructuring layered
4

Similar Publications

Molecular Evolution of the H5 and H7 Highly Pathogenic Avian Influenza Virus Haemagglutinin Cleavage Site Motif.

Rev Med Virol

January 2025

United States Department of Agriculture, Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA.

Avian influenza viruses are ubiquitous in the Anatinae subfamily of aquatic birds and occasionally spill over to poultry. Infection with low pathogenicity avian influenza viruses generally leads to subclinical or mild clinical disease. In contrast, highly pathogenic avian influenza viruses emerge from low pathogenic forms and can cause severe disease associated with extraordinarily high mortality rates.

View Article and Find Full Text PDF

This study presents a detailed density functional theory (DFT) investigation into the mechanism and energetics of C-H activations catalyzed by bioinspired Fe(IV)O complexes, particularly in the presence of -hydroxy mediators. The findings show that these mediators significantly enhance the reactivity of the iron-oxo complex. The study examines three substrates with varying bond dissociation energies─ethylbenzene, cyclohexane, and cyclohexadiene─alongside the [Fe(IV)O(N4Py)] complex.

View Article and Find Full Text PDF

Unveiling the Proton-Electron Transfer Pathway in Zn-Embedded N-Doped Carbon Catalyst for Enhanced CO Electroreduction.

ACS Appl Mater Interfaces

December 2024

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China.

Proton-electron transfer (PET) processes play a pivotal role in numerous electrochemical reactions; yet, effectively harnessing them remains a formidable challenge. Consequently, unveiling the PET pathway is imperative to elucidate the factors influencing the efficiency and selectivity of small molecule electrochemical conversion. In this study, a Zn-NC model catalyst with N and C vacancies was synthesized using a hydriding method to investigate the universal impact of PET on CO electroreduction.

View Article and Find Full Text PDF

Objective: Mechanisms underlying metabolic improvement following metabolic and bariatric surgery (MBS) may provide insight into novel therapies. Vasopressin improves body composition and protects against hypoglycemia. Associations of copeptin, a stable cleavage product of vasopressin, with BMI and insulin resistance suggest an adaptive increase in vasopressin to counteract metabolic disruption.

View Article and Find Full Text PDF

Light-Triggered Reversible Assembly of Halide Perovskite Nanoplatelets.

Adv Mater

December 2024

Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India.

Advancements in stimuli-driven nanoactuators necessitate the discovery of photo-switchable, self-contained semiconductor nanostructures capable of precise mechanical responses. The reversible assembly of 0D CsBiI halide perovskite nanoplatelets (NPLs) between stacked and scattered configurations are demonstrated under light and dark, respectively. This sunlight-triggered perpetual flipping of the NPLs, occurring in less than a minute, is associated with a color change between brown and red.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!