Summary: The number of cells measured in single-cell transcriptomic data has grown fast in recent years. For such large-scale data, subsampling is a powerful and often necessary tool for exploratory data analysis. However, the easiest random subsampling is not ideal from the perspective of preserving rare cell types. Therefore, diversity-preserving subsampling is required for fast exploration of cell types in a large-scale dataset. Here, we propose scSampler, an algorithm for fast diversity-preserving subsampling of single-cell transcriptomic data.

Availability And Implementation: scSampler is implemented in Python and is published under the MIT source license. It can be installed by "pip install scsampler" and used with the Scanpy pipline. The code is available on GitHub: https://github.com/SONGDONGYUAN1994/scsampler. An R interface is available at: https://github.com/SONGDONGYUAN1994/rscsampler.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9991884PMC
http://dx.doi.org/10.1093/bioinformatics/btac271DOI Listing

Publication Analysis

Top Keywords

diversity-preserving subsampling
12
single-cell transcriptomic
12
fast diversity-preserving
8
transcriptomic data
8
cell types
8
subsampling
5
data
5
scsampler fast
4
subsampling large-scale
4
large-scale single-cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!