AI Article Synopsis

  • The abundance of cosmic ray nickel nuclei compared to iron is significant, making it a good candidate for studying cosmic ray spectra with low background noise.
  • Measurements of cosmic ray nickel above 3 GeV/n are limited, highlighting the importance of new data for understanding cosmic sources and heavy nucleus propagation.
  • The CALET instrument, operational on the International Space Station, provided precise measurements of the nickel spectrum from 8.8 to 240 GeV/n, revealing a spectral index of -2.51±0.07 in the energy range of 20 to 240 GeV/n.

Article Abstract

The relative abundance of cosmic ray nickel nuclei with respect to iron is by far larger than for all other transiron elements; therefore it provides a favorable opportunity for a low background measurement of its spectrum. Since nickel, as well as iron, is one of the most stable nuclei, the nickel energy spectrum and its relative abundance with respect to iron provide important information to estimate the abundances at the cosmic ray source and to model the Galactic propagation of heavy nuclei. However, only a few direct measurements of cosmic-ray nickel at energy larger than ∼3  GeV/n are available at present in the literature, and they are affected by strong limitations in both energy reach and statistics. In this Letter, we present a measurement of the differential energy spectrum of nickel in the energy range from 8.8  to 240  GeV/n, carried out with unprecedented precision by the Calorimetric Electron Telescope (CALET) in operation on the International Space Station since 2015. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number Z=40). The particle's energy is measured by a homogeneous calorimeter (1.2 proton interaction lengths, 27 radiation lengths) preceded by a thin imaging section (3 radiation lengths) providing tracking and energy sampling. This Letter follows our previous measurement of the iron spectrum [1O. Adriani et al. (CALET Collaboration), Phys. Rev. Lett. 126, 241101 (2021).PRLTAO0031-900710.1103/PhysRevLett.126.241101], and it extends our investigation on the energy dependence of the spectral index of heavy elements. It reports the analysis of nickel data collected from November 2015 to May 2021 and a detailed assessment of the systematic uncertainties. In the region from 20 to 240  GeV/n our present data are compatible within the errors with a single power law with spectral index -2.51±0.07.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.128.131103DOI Listing

Publication Analysis

Top Keywords

nickel energy
12
energy
9
energy range
8
international space
8
space station
8
relative abundance
8
cosmic ray
8
respect iron
8
spectrum nickel
8
energy spectrum
8

Similar Publications

Interface Engineering and Modulation of Nickel Oxide for High Air-Stable p-Type Crystalline Silicon Solar Cells.

Small

January 2025

Anhui Soltrend New Energy Technology Co., Ltd, Lujiang County, Hefei, 230000, China.

Dopant-free passivating contact crystalline silicon solar cells hold the potential of higher efficiency and cost down. In the hole-transport terminal, one still faces the challenge of trade-off between efficiency and stability. In this work, a H-AlO/NiO/Ni stacked hole-transport layer is proposed, where the H-AlO standing for H-rich AlO film can effectively reduce the interfacial defects and the high work function Ni metal results in a low contact resistance of 47.

View Article and Find Full Text PDF

One-Pot Synthesis and Enhanced Vis-NIR Photocatalytic Activity of NiTiO/TiO Templated by Waste Tobacco Stem-Silks.

Nanomaterials (Basel)

January 2025

School of Chemical Sciences & Technology, School of Materials and Energy, Yunnan Provincial Center of Technology Innovation for New Materials and Equipment in Water Pollution Control, Institute of International Rivers and Eco-Security, Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China.

Synthesis of the photocatalysts with near-infrared light response usually involves upconversion materials or plasmon-assisted noble metals. Herein, NiTiO/TiO was synthesized by using waste tobacco stem-silks as biotemplates and tetra-tert-butyl orthotitanate and nickel nitrate as precursors in a one-pot procedure. NiTiO(1.

View Article and Find Full Text PDF

Nanomechanical responses (force-time profiles) of crystal lattices under deformation exhibit random critical jumps, reflecting the underlying structural transition processes. Despite extensive data collection, interpreting dynamic critical responses and their underlying mechanisms remains a significant challenge. This study explores a microscopic theoretical approach to analyse critical force fluctuations in martensitic transitions.

View Article and Find Full Text PDF

Electrocatalytic CO-to-CO conversion with a high CO Faradaic efficiency (FE) at low overpotentials and industrial-level current densities is highly desirable but a huge challenge over non-noble metal catalysts. Herein, graphitic N-rich porous carbons supporting atomically dispersed nickel (NiN-O sites with an axial oxygen) were synthesized (denoted as O-Ni-N-GC) and applied as the cathode catalyst in a CORR flow cell. O-Ni-N-GC showed excellent selectivity with a FE over 92% at low overpotentials ranging from 17 to 60 mV, and over 99% at 80 mV.

View Article and Find Full Text PDF

The study investigated the enhancement of stability and efficacy in the removal of bivalent nickel ions (Ni(II)) by utilizing a cerium metal-organic framework (Ce-MOF) encapsulated within a food-grade algal matrix. This composite material is integrated into a dual-layer hydrogel containing chitosan and carboxymethyl cellulose. The enhancement of structural integrity in the final product can be attributed to the cross-linking process with epichlorohydrin, leading to the development of Ce-MOF-FGA/CMC-CS hydrogel beads.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!