Purpose: To investigate the utility of radiomics features of diffusion-weighted magnetic resonance imaging (DW-MRI) to differentiate fat-poor angiomyolipoma (fpAML) from clear cell renal cell carcinoma (ccRCC).

Materials And Methods: This multi-institutional study included two cohorts with pathologically confirmed renal tumors: 65 patients with ccRCC and 18 with fpAML in the model development cohort, and 17 with ccRCC and 13 with fpAML in the external validation cohort. All patients underwent magnetic resonance imaging (MRI) including DW-MRI. Radiomics analysis was used to extract 39 imaging features from the apparent diffusion coefficient (ADC) map. The radiomics features were analyzed with unsupervised hierarchical cluster analysis. A random forest (RF) model was used to identify radiomics features important for differentiating fpAML from ccRCC in the development cohort. The diagnostic performance of the RF model was evaluated in the development and validation cohorts.

Results: The cases in the developmental cohort were classified into three groups with different frequencies of fpAML by cluster analysis of radiomics features. RF analysis of the development cohort showed that the mean ADC value was important for differentiating fpAML from ccRCC, as well as higher-texture features including gray-level run length matrix (GLRLM)_long-run low gray-level enhancement (LRLGE), and GLRLM_low gray-level run emphasis (LGRE). The area under the curve values of the development [0.90, 95% confidence interval (CI) 0.80-1.00] and validation cohorts (0.87, 95% CI 0.74-1.00) were similar (P = 0.91).

Conclusion: The radiomics features of ADC maps are useful for differentiating fpAML from ccRCC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00261-022-03486-5DOI Listing

Publication Analysis

Top Keywords

radiomics features
24
magnetic resonance
12
resonance imaging
12
development cohort
12
differentiating fpaml
12
fpaml ccrcc
12
utility radiomics
8
features
8
features diffusion-weighted
8
diffusion-weighted magnetic
8

Similar Publications

Purpose: Undifferentiated pleomorphic sarcomas (UPSs) demonstrate therapy-induced hemosiderin deposition, granulation tissue formation, fibrosis, and calcification. We aimed to determine the treatment-assessment value of morphologic tumoral hemorrhage patterns and first- and high-order radiomic features extracted from contrast-enhanced susceptibility-weighted imaging (CE-SWI).

Materials And Methods: This retrospective institutional review board-authorized study included 33 patients with extremity UPS with magnetic resonance imaging and resection performed from February 2021 to May 2023.

View Article and Find Full Text PDF

Background: The prognostic prediction of pancreatic ductal adenocarcinoma (PDAC) remains challenging. This study aimed to develop a radiomics model to predict Ki-67 expression status in PDAC patients using radiomics features from dual-phase enhanced CT, and integrated clinical characteristics to create a radiomics-clinical nomogram for prognostic prediction.

Methods: In this retrospective study, data were collected from 124 PDAC patients treated surgically at a single center, from January 2017 to March 2023.

View Article and Find Full Text PDF

Background: Perineural invasion (PNI) in colorectal cancer (CRC) is a significant prognostic factor associated with poor outcomes. Radiomics, which involves extracting quantitative features from medical imaging, has emerged as a potential tool for predicting PNI. This systematic review and meta-analysis aimed to evaluate the diagnostic accuracy of radiomics models in predicting PNI in CRC.

View Article and Find Full Text PDF

Purpose: Intra-pancreatic fat deposition (IPFD) is closely associated with the onset and progression of type 2 diabetes mellitus (T2DM). We aimed to develop an accurate and automated method for assessing IPFD on multi-echo Dixon MRI.

Materials And Methods: In this retrospective study, 534 patients from two centers who underwent upper abdomen MRI and completed multi-echo and double-echo Dixon MRI were included.

View Article and Find Full Text PDF

Objectives: Combining Computed Tomography (CT) intuitive anatomical features with Three-Dimensional (3D) CT multimodal radiomic imaging features to construct a model for assessing the aggressiveness of pancreatic neuroendocrine tumors (pNETs) prior to surgery.

Methods: This study involved 242 patients, randomly assigned to training (170) and validation (72) cohorts. Preoperative CT and 3D CT radiomic features were used to develop a model predicting pNETs aggressiveness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!