Introduction: Neuronal Ceroid Lipofuscinosis (NCL) comprises a clinically and genetically heterogeneous group of 13 neurodegenerative lysosomal storage disorders. Neuronal Ceroid lipofuscinosis type 2 disease (NCL2), caused by the deficient lysosomal enzyme tripeptidyl peptidase 1 (TPP1), is the only one with an approved enzyme replacement treatment (ERT). Early initiation of ERT appears to modify significantly the natural history of the disease. We aimed to shorten the time to diagnosis of NCL2.
Methods: In March 2017, we started per first time in Spain a selective screening program, the LINCE project, in pediatric patients with clinical symptoms compatible with NCL2 disease. The program covered the whole country. We distributed kits to pediatricians with the necessary material to assess patients. All samples in this study were received within one week of collection. Enzymatic activity determined on dried blood spots was the main method used to screen for TPP1 and palmitoyl protein thioesterase 1 (PPT1) for the differential diagnosis with neuronal ceroid lipofuscinosis type 1 (NCL1).
Results: Over a period of three years, we received 71 samples. The analysis was minimally invasive, relatively cheap and fast-executing. Three cases identified as a direct result of the selective screening strategy were confirmed by genetic study of NCL2 disease with a median age of 4.5 years. Our screening method has a specificity of 100%, and, with the absence to date of false negatives. We did not detect any NCL1-positive cases.
Conclusions: LINCE proved to be a simple, useful, and reliable tool for the diagnosis of NCL2, enabling clinicians to diagnose NCL2 faster. The presence of NCL2-positive cases in our population and availability of treatment may facilitate the inclusion of NCL2 in neonatal screening programs for early diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002010 | PMC |
http://dx.doi.org/10.3389/fped.2022.876688 | DOI Listing |
Front Pediatr
March 2022
Congenital Metabolic Diseases Unit, Department of Neonatology, University Clinical Hospital of Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago (IDIS), European Reference Network for Hereditary Metabolic Disorders (MetabERN), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.
Introduction: Neuronal Ceroid Lipofuscinosis (NCL) comprises a clinically and genetically heterogeneous group of 13 neurodegenerative lysosomal storage disorders. Neuronal Ceroid lipofuscinosis type 2 disease (NCL2), caused by the deficient lysosomal enzyme tripeptidyl peptidase 1 (TPP1), is the only one with an approved enzyme replacement treatment (ERT). Early initiation of ERT appears to modify significantly the natural history of the disease.
View Article and Find Full Text PDFNeurol Sci
March 2021
Clinical Chemistry Department, Ege University Faculty of Medicine, İzmir, Turkey.
Introduction And Purpose: Neuronal ceroid lipofuscinoses (NCLs) is a group of congenital metabolic diseases where the neurodegenerative process with the accumulation of ceroid and lipofuscin autofluorescent storage materials is at the forefront. According to the age of presentation, NCLs are classified as congenital, infantile (INCL), late infantile (LINCL), juvenile (JNCL), and adult (ANCL) NCLs. In our study, it was aimed to discuss the clinical and molecular characteristics of our patients diagnosed with NCL.
View Article and Find Full Text PDFJ Mass Spectrom
January 2021
Steinbeis Centre for Biopolymer Analysis and Biomedical Mass Spectrometry, Mass Spectrometry Laboratory, Marktstrasse 29, Ruesselsheim am Main, D-65428, Germany.
Neuronal ceroid lipofuscinoses (NCLs) are a group of neurodegenerative diseases predominantly in childhood that are characterized by psychomotor deterioration, epilepsy, and early death of patients. The NCLs analyzed in the present study are caused by defects of the specific enzymes, CLN1 (palmitoyl protein thioesterase 1; PPT1), CLN2 (tripeptidyl peptidase 1; TPP1), and CLN10 (cathepsin D). Specific and sensitive diagnostic assays of NCLs were the main goal of this study.
View Article and Find Full Text PDFClin Chim Acta
August 2020
Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, United States. Electronic address:
Background: The neuronal ceroid lipofuscinosis 2 (NCL2) or classic late-infantile neuronal ceroid lipofuscinosis (LINCL) is a neurogenetic disorder caused by mutations in the TPPI gene, which codes for the lysosomal tripeptidyl peptidase 1 (TPPI) EC 3.4.14.
View Article and Find Full Text PDFBMC Neurol
December 2018
FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat, 380015, India.
Background: Neuronal ceroid lipofuscinoses type I and type II (NCL1 and NCL2) also known as Batten disease are the commonly observed neurodegenerative lysosomal storage disorder caused by mutations in the PPT1 and TPP1 genes respectively. Till date, nearly 76 mutations in PPT1 and approximately 140 mutations, including large deletion/duplications, in TPP1 genes have been reported in the literature. The present study includes 34 unrelated Indian patients (12 females and 22 males) having epilepsy, visual impairment, cerebral atrophy, and cerebellar atrophy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!