A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Weighted Gene Coexpression Network Analysis Identifies TBC1D10C as a New Prognostic Biomarker for Breast Cancer. | LitMetric

Background: Immune checkpoint inhibitors are a promising therapeutic strategy for breast cancer (BRCA) patients. The tumor microenvironment (TME) can downregulate the immune response to cancer therapy. Our study is aimed at finding a TME-related biomarker to identify patients who might respond to immunotherapy.

Method: We downloaded raw data from several databases including TCGA and MDACC to identify TME hub genes associated with overall survival (OS) and the progression-free interval (PFI) by WGCNA. Correlations between hub genes and either tumor-infiltrating immune cells or immune checkpoints were conducted by ssGSEA.

Result: TME-related green and black modules were selected by WGCNA to further screen hub genes. Random forest and univariate and multivariate Cox regressions were applied to screen hub genes (MYO1G, TBC1D10C, SELPLG, and LRRC15) and construct a nomogram to predict the survival of BRCA patients. The -index for the nomogram was 0.713. A DCA of the predictive model revealed that the net benefit of the nomogram was significantly higher than others and the calibration curve demonstrated a good performance by the nomogram. Only TBC1D10C was correlated with both OS and the PFI (both values < 0.05). TBC1D10C also had a high positive association with tumor-infiltrating immune cells and common immune checkpoints (PD-1, CTLA-4, and TIGIT).

Conclusion: We constructed a TME-related gene signature model to predict the survival probability of BRCA patients. We also identified a hub gene, TBC1D10C, which was correlated with both OS and the PFI and had a high positive association with tumor-infiltrating immune cells and common immune checkpoints. TBC1D10C may be a new biomarker to select patients who may benefit from immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005324PMC
http://dx.doi.org/10.1155/2022/5259187DOI Listing

Publication Analysis

Top Keywords

hub genes
16
brca patients
12
tumor-infiltrating immune
12
immune cells
12
immune checkpoints
12
breast cancer
8
immune
8
screen hub
8
predict survival
8
tbc1d10c correlated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!