Our research focuses on phenomena accompanying adsorption of mesityl oxide (4-methylpent-3-en-2-one) on the surface of heterogeneous supported gold catalysts: Au/CeO, Au/TiO and Au/SiO. We have studied reduction in the gas phase of (volatile) α,β-unsaturated carbonyl compounds (R-(V)ABUCC) which mesityl oxide is a basic model of. infrared (IR) spectroscopy was employed to establish that the most active catalysts allow adsorption of conjugated ketones or aldehydes in the enolate ( bridge-like adsorption through the oxygen from the carbonyl group and the β-carbon) and carboxylic form or with the C[double bond, length as m-dash]C double bond on a Lewis acidic site. Reductive properties of the catalysts and pure supports were studied by temperature-programmed reduction (TPR). We show that cerium(iv) oxide (CeO, ceria) and titanium(iv) oxide (TiO, titania) when decorated with gold nanoparticles (AuNP) can interact with hydrogen at temperatures approx. 150 °C lower than typical for pure oxides what includes even cyclic adsorption and instant release of H below 100 °C in the case of gold-ceria system. Morphology and structure characterisation by transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD) confirms that, with the obtained Au loadings, we achieved excellent dispersion of AuNPs while maintaining their small size, preferably below 5 nm, even though the Au/CeO catalyst contained broad distribution of AuNPs sizes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981266 | PMC |
http://dx.doi.org/10.1039/d1ra09434c | DOI Listing |
Sci Rep
January 2025
Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
Mitochondrial transplantation (MTx) offers a promising therapeutic approach to mitigate mitochondrial dysfunction in conditions such as ischemia-reperfusion (IR) injury. The quality and viability of donor mitochondria are critical to MTx success, necessitating the optimization of isolation protocols. This study aimed to assess a rapid mitochondrial isolation method, examine the relationship between mitochondrial size and membrane potential, and evaluate the potential benefits of Poloxamer 188 (P-188) in improving mitochondrial quality during the isolation process.
View Article and Find Full Text PDFBiosci Rep
January 2025
Scotland's Rural College Animal and Veterinary Sciences Research Group, Edinburgh, United Kingdom.
Approximately one in every 800 children is born with the severe aneuploid condition of Down Syndrome, a trisomy of chromosome 21. Low blood pressure (hypotension) is a common condition associated with DS and can have a significant impact on exercise tolerance and quality of life. Little is known about the factors driving this hypotensive phenotype and therefore therapeutic interventions are limited.
View Article and Find Full Text PDFACS Cent Sci
January 2025
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
Multicomponent reactions (MCRs), highly sought-after methods to produce atom-, step-, and energy-economic organic syntheses, have been developed extensively. However, catalytic asymmetric MCRs, especially those involving radical species, remain largely unexplored owing to the difficulty in stereoselectively regulating the extraordinarily high reactivity of open-shell radical species. Herein, we report a conceptually novel catalytic asymmetric three-component radical cascade reaction of readily accessible glycine esters, α-bromo carbonyl compounds and 2-vinylcyclopropyl ketones via synergistic photoredox/Brønsted acid catalysis, in which three sequential C-C (σ/π/σ) bond-forming events occurred through a radical addition/ring-opening/radical-radical coupling protocol, affording an array of valuable enantioenriched unnatural α-amino acid derivatives bearing two contiguous stereogenic centers and an alkene moiety in moderate to good yield with high diastereoselectivity, excellent enantioselectivity and good -dominated geometry under mild reaction conditions.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Metal Research (IMR), Chinese Academy of Science, Wenhua Road, Shenyang, China.
Recently, researchers have used silver nanoparticles (AgNPs) coupled with humic acid (HA) as antimicrobial agents. Herein, AgNPs were prepared and coupled with humic acid for their antimicrobial activities. The as-prepared AgNPs coupled with humic acid (HA) were characterized by an atomic force microscope (AFM), X-ray powder diffraction (XRD), zeta potential, zeta sizer, Fourier-transform infrared (FT-IR) spectroscopy, and UV-VIS spectrophotometer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!