A new organic inorganic hybrid [TPA]CoBr, where TPA = [(CH)N] (, tetra-propyl-ammonium) compound has been synthesized by slow evaporation method at room temperature. Single crystal X-ray diffraction (SC-XRD), X-ray powder diffraction (XRPD), thermal analyses, vibrational and complex impedance spectroscopy have been used to characterize both structural, thermal, electrical properties. [TPA]CoBr crystallizes in the monoclinic system (2/ space group) with the following cell parameters: = 33.145 (5) Å, = 14.234 (3) Å, = 15.081 (2) Å and = 110.207 (5)°. In the crystal structure, the organic TPA cations which form layers stacked along the -axis, are separated from each other by inorganic tetrahedral [CoBr] anions. The XRPD pattern confirms both the high purity of the sample and the crystalline nature of the powder. The differential scanning calorimetry (DSC) analysis shows an endothermic peak at 394 K upon heating which is ascribed to a structural phase transition since no decomposition of the titled compound is evidenced by thermogravimetric analysis. The ac conductivity and the dielectric properties confirm the presence of the phase transition. At the structural phase transition around 394 K, a change from a quantum mechanical tunneling to a correlated barrier hopping conduction models is determined from the temperature dependence of the exponent of the Jonscher's power law. The analysis of complex impedance spectra shows that the electrical properties of the material are heavily dependent on frequency and temperature, indicating a relaxation phenomenon and semiconductor-type behavior. One single semicircle is detectable in the Nyquist plots of the complex impedance spectra which can be satisfactorily fitted with a combination //CPE elements assigned to the bulk response. This behavior suggests that the sample is electrically homogeneous. Capacitance analysis proves the high effective permittivity at radio frequencies in the sample.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979218 | PMC |
http://dx.doi.org/10.1039/d1ra07965d | DOI Listing |
Sci Rep
January 2025
University of Novi Sad, BioSense Institute, Dr Zorana Djindjica 1, Novi Sad, 21000, Serbia.
Although various sensors specifically developed for target analytes are available, affordable biosensing solutions with broad applicability are limited. In this study, a cost-effective biosensor for detecting human epidermal growth factor receptor 2 (HER2) was developed using custom-made gold leaf electrodes (GLEs). A novel strategy for antibody immobilization on a gold surface, for the first time mediated by protein L and HER2-specific antibody trastuzumab, was examined using commercial screen-printed gold electrodes and GLEs.
View Article and Find Full Text PDFNanoscale
January 2025
J. Heyrovský Institute of Physical Chemistry, Czech Acad. Sci., Dolejškova 3, CZ-18200, Prague 8, Czech Republic.
Compositionally complex doping of spinel oxides toward high-entropy oxides is expected to enhance their electrochemical performance substantially. We successfully prepared high-entropy compounds, the oxide (ZnMgCoCu)FeO (HEOFe), lithiated oxyfluoride Li(ZnMgCoCu)FeOF (LiHEOFeF), and lithiated oxychloride Li(ZnMgCoCu)FeOCl (LiHEOFeCl) with a spinel-based cubic structure by ball milling and subsequent heat treatment. The products exhibit particles with sizes from 50 to 200 nm with a homogeneous atomic distribution.
View Article and Find Full Text PDFJ Neuroeng Rehabil
December 2024
Chair of Autonomous Systems and Mechatronics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
Wearable robots are often powered by elastic actuators, which can mimic the intrinsic compliance observed in human joints, contributing to safe and seamless interaction. However, due to their increased complexity, when compared to direct drives, elastic actuators are susceptible to faults, which pose significant challenges, potentially compromising user experience and safety during interaction. In this article, we developed a fault-tolerant control strategy for torque assistance in a knee exoskeleton and investigated user experience during a walking task while emulating faults.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Mechanical Engineering, Department of Machining, Assembly and Engineering Metrology, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic.
The aim of this work is to investigate the sound absorption properties of open-porous polyamide 12 (PA12) structures produced using Selective Laser Sintering (SLS) technology. The examined 3D-printed samples, fabricated with hexagonal prism lattice structures, featured varying thicknesses, cell sizes, and orientations. Additionally, some samples were produced with an outer shell to evaluate its impact on sound absorption.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK.
Lung cancer is the most common type of cancer diagnosed worldwide and is also among the most fatal. Early detection, before symptoms become evident, is fundamental for patients' survival. Therefore, several lung cancer biomarkers have been proposed to enable a prompt diagnosis, including neuron-specific enolase (NSE) and carcinoembryonic antigen (CEA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!