To improve the performance of lithium-sulfur (Li-S) batteries, herein, based on the idea of designing a material that can adsorb polysulfides and improve the reaction kinetics, a Co,N-co-doped graphene composite (Co-N-G) was prepared. According to the characterization of Co-N-G, there was a homogeneous and dispersed distribution of N and Co active sites embedded in the Co-N-G sample. The 2D sheet-like microstructure and Co, N with a strong binding energy provided significant physical and chemical adsorption functions, which are conducive to the bonding S and suppression of LiPSs. Moreover, the dispersed Co and N as catalysts promoted the reaction kinetics in Li-S batteries the reutilization of LiPSs and reduced the electrochemical resistance. Thus, the discharge specific capacity in the first cycle for the Co-N-G/S battery reached 1255.7 mA h g at 0.2C. After 100 cycles, it could still reach 803.0 mA h g, with a retention rate of about 64%. This phenomenon proves that this type of Co-N-G composite with Co and N catalysts plays an effective role in improving the performance of batteries and can be further studied in Li-S batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979098 | PMC |
http://dx.doi.org/10.1039/d1ra08566b | DOI Listing |
Adv Mater
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
Commercialization of lithium-sulfur (Li-S) batteries is largely limited by polysulfide shuttling and sluggish kinetics. Herein, 2D nanochannel interlayer composed of alternatively-stacked porous silica nanosheets (PSN) and TiCT-MXene are developed. The 2D nanochannels with selective cation transport characteristics facilitate lithium ion rapid transport, while reject the translocation of polysulfide anions across the separator.
View Article and Find Full Text PDFSmall
January 2025
Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China.
Hard carbon (HC) materials are suitable anodes for sodium-ion batteries (SIBs) but still suffer from insufficient initial Coulombic efficiency (ICE). Promoting sodium storage via the pore filling mechanism is an effective way to improve the ICE, and the key here is regulating the pore structures of HC. In this work, coal-derived HC is successfully engineered with abundant accessible closed nanopores by treating the coal precursors with a facile destructive oxidation strategy.
View Article and Find Full Text PDFChem Asian J
January 2025
Shaanxi University of Technology, School of Materials Science and Engineering, No.1 East Ring Rd., Hantai District, 723001, Hanzhong, CHINA.
Lithium-sulfur (Li-S) batteries are promising energy storage devices due to their high theoretical energy density and cost-effectiveness. However, the shuttle effect of polysulfides during the charging and discharging processes leads to a rapid decline in capacity, thereby restricting their application in energy storage. The separator, a crucial component of Li-S batteries, facilitates the transport of Li+ ions.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer Science and Information Engineering, Harbin Normal University, Harbin, 150025, China.
The health of complex systems continues to decline as they operate over long periods of time, so it is important to assess the health state of complex systems. Belief rule base (BRB) is widely used in the field of health state assessment of complex systems as a semi-quantitative method that can address uncertainty effectively and with interpretability. In practical engineering, BRB still has problems: the incompleteness of expert knowledge and the inconsistency of the cognitive abilities of each expert have an effect on the construction of the model and interpretability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China.
Na superionic conductor (NASICON)-structure NaMnV(PO) (NVMP) electrode materials reveal highly attractive application prospects due to ultrahigh energy density originating from two-electron reactions. Nevertheless, NVMP also encounters challenges with its poor electronic conductivity, Mn dissolution, and Jahn-Teller distortion. To address this issue, utilizing N-doped carbon layers and carbon nanotubes (CNTs) for dual encapsulation enhances the material's electronic conductivity, creating an effective electron transport network that promotes the rapid diffusion and storage of Na.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!