Biotechnology is used extensively in medical procedures, dentistry, statures, biosensors, bio electrodes, skin substitutes, and medicine delivery systems. Glass is biocompatible and can be used in permanent implantation applications without risk. The porosity of BG matrixes, combined with their huge specific surface area, greatly aids the formation of hydroxyl carbonate apatite. Zn-Doped bioglass can be made in the lab in a variety of ways, depending on how it will be used in medical treatment. The melt-quenching technique, spray pyrolysis method, sol-gel process for BG fabrication, spray drying method, and modified Stöber method are examples of such strategies. Spray pyrolysis is a comprehensive approach that is an undeniably versatile and effective material synthesis technology. It is a low-cost, non-vacuum method for producing materials in the form of powders and films that may be deposited on a variety of substrates, and is a straightforward method to adapt for large-area deposition and industrial production processes. For better utility in medical care, MBG fabricated in the laboratory should be characterized using various characterization methods such as SEM, TEM, BET, and XRD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979097PMC
http://dx.doi.org/10.1039/d1ra06113eDOI Listing

Publication Analysis

Top Keywords

spray pyrolysis
12
pyrolysis method
8
method
6
ion-doped mesoporous
4
mesoporous bioactive
4
bioactive glass
4
glass preparation
4
preparation characterization
4
characterization applications
4
spray
4

Similar Publications

The Effect of H Fluence Irradiation on the Optical, Structural, and Morphological Properties of ZnO Thin Films.

Materials (Basel)

December 2024

Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.

Polycrystalline zinc oxide (ZnO) thin films were deposited on soda-lime glass substrates using the chemical spray pyrolysis method at 450 °C. The samples were irradiated with 8 keV H ions at three different fluences using a Colutron ion gun. The effects of the irradiation on the structural, morphological, and optical properties were studied with different techniques, including Rutherford Backscattering Spectrometry (RBS), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Ultraviolet and Visible Spectroscopy (UV-Vis).

View Article and Find Full Text PDF

In this study, we aimed to enhance the photocatalytic performance of molybdenum oxide (MoO) thin films by doping with silver (Ag) via a spray pyrolysis technique. The primary objective for silver incorporation was intended to introduce additional energy levels into the band structure of MoO, improving its efficiency. Structural, optical, and photocatalytic properties were analyzed using X-ray diffraction (XRD) and optical spectroscopy.

View Article and Find Full Text PDF

One-step spray pyrolysis synthesis of ZnO/Ag hollow spheres for enhanced visible-light-driven antibacterial applications and wound healing.

Dalton Trans

January 2025

Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.

Article Synopsis
  • ZnO/Ag hollow particles were created using a one-step spray pyrolysis method to improve antibacterial activity and promote wound healing.
  • The materials were characterized through techniques like XRD, TEM, and XPS, confirming their hollow structure and even distribution of silver nanoparticles, which enhance light absorption due to their unique properties.
  • Antibacterial tests showed that these composites were significantly more effective against bacteria, including MRSA, under visible light, as further analyzed by EPR spectroscopy which indicated the generation of reactive oxygen species contributing to their antibacterial action.
View Article and Find Full Text PDF

Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing.

View Article and Find Full Text PDF

Synthesis of Mg doped ZnO cauli-flower nanostructures using chemical spray and its investigation for ammonia gas sensing at room temperature.

Talanta

December 2024

Thin Films and Materials Science Research Laboratory, Department of Physics, Dayanand Science College, Latur, Maharashtra, 413512, India. Electronic address:

In this study, we report the synthesis, optical characterization and ultra-sensitive ammonia gas sensing properties of Mg-doped ZnO cauliflower like nanostructures obtained via chemical spray pyrolysis technique. The morphological and structural properties of the prepared films were investigated by Field Emission Scanning electron microscope (FESEM) and X-ray diffraction (XRD). Gas sensing and optical characterizations were carried out using Keithley electrometer and Uv-Vis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!