Organisms can synthesize heterogeneous structures with excellent mechanical properties through mineralization, the most typical of which are teeth. The tooth is an extraordinarily resilient bi-layered material that is composed of external enamel perpendicular to the tooth surface and internal dentin parallel to the tooth surface. The synthesis of enamel-like heterostructures with good mechanical properties remains an elusive challenge. In this study, we applied a biomimetic mineralization method to grow fluorapatite/CaCO (FAP/CaCO) heterogeneous structured thin films that mimic their biogenic counterparts found in teeth through a three-step pathway: coating a polymer substrate, growing a layered calcite film, and mineralization of a fluorapatite columnar array on the calcite layer. The synthetic heterostructure composites combine well and exhibit good mechanical properties comparable to their biogenic counterparts. The FAP/CaCO heterogeneous structured composite exhibits excellent mechanical properties, with a hardness and Young's modulus of 1.99 ± 0.02 GPa and 47.5 ± 0.6 GPa, respectively. This study provides a reasonable new idea for unique heterogeneous structured materials designed at room temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8992358PMC
http://dx.doi.org/10.1039/d2ra00374kDOI Listing

Publication Analysis

Top Keywords

heterogeneous structured
16
mechanical properties
16
excellent mechanical
8
tooth surface
8
good mechanical
8
fap/caco heterogeneous
8
biogenic counterparts
8
heterogeneous
5
room-temperature growth
4
growth fluorapatite/caco
4

Similar Publications

Diazotrophs have made significant contributions to marine nitrogen cycles. However, their distribution patterns and determined mechanisms have not been fully understood, particularly at the small regional scales. Here, the diazotrophic community structure by different sample sizes (0.

View Article and Find Full Text PDF

Catalytic-assisted remediation and phytotoxicity evaluations of organic pollutants in the presence of metal-doped BiO-based NPs catalyst.

J Environ Manage

January 2025

Universidad Autónoma de Nuevo León, Facultad de Agronomía, Laboratorio de Ciencias Naturales, General Escobedo, 66050, Nuevo Leon, Mexico. Electronic address:

The chemical co-precipitation method was used to synthesize a variety of pure BiO and substituted BiCoCdO NPs (x = 0.0-0.8) and doping influences were evaluated based on the optical, photocatalytic, morphological, and structural characteristics.

View Article and Find Full Text PDF

Mitigating traffic injury rate plays an essential role in sustainable urban development and is closely related to public health and human well-being. The inequity of traffic injury rate undermines equitable access to transportation infrastructure and poses a significant threat to the safety of residents during their commutes. Although previous studies have examined the association between socio-demographic characteristics and regional traffic crash risk, they seldom consider the spatial heterogeneity of the traffic injury rate inequity especially for the vulnerable groups.

View Article and Find Full Text PDF

Structure-activity relationship of small organic molecule functionalized Bi-based heterogeneous catalysts for electrocatalytic reduction of CO to formate.

J Colloid Interface Sci

January 2025

Chemical Engineering College, Inner Mongolia University of Technology, Aimin street 49 Xincheng District, Hohhot 010051 PR China; Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Aimin street 49, Xincheng District, Hohhot 010051 PR China; Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Aimin street 49 Xincheng District, Hohhot 010051 PR China. Electronic address:

Ligand engineering has proven to be an effective strategy for tuning and controlling the microenvironment of coordinated metal centers, highlighting the critical bridge between the activity and structural features of catalysts during electrocatalytic CO reduction reactions (eCORR). However, the limited availability of diverse organic ligands has hindered the development of novel high-performing electrocatalysts. In contrast, small organic molecules have been widely used in the fabrication of metal complexes due to their well-defined functionalities, low cost, and easy accessibility.

View Article and Find Full Text PDF

While single-atom catalysts (SACs) have been extensively investigated as a high-atom-efficiency heterogeneous catalyst for peroxymonosulfate (PMS) oxidation reaction, the stable constructing and activation efficacy of the reaction sites remains less clarified. Herein, we employed gelatin as a N,O-bidentate ligand for Co (II) to form for a N-doped carbon precursor, while introducing NaCl as a template agent to induce the adoption of a Co-N conformation and disorganize the Co-O moiety. This approach facilitates uniform spatial isolation and atomic-level dispersion of Co atoms within the aerogel, effectively inhibiting the aggregation of Co during synthesis and enabling precise and controllable preparation of Co single-atom catalysts (SACs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!