We synthesized two series of bimetallic (zinc and cobalt) zeolitic imidazolate frameworks (ZIF-62) under different solvothermal conditions. It is found that the structure of the derived ZIF crystals is highly sensitive to synthesis conditions. One series possesses the standard ZIF-62 structure, whereas the other has a mixed structure composed of both the standard structure and an unknown one. The standard series exhibits a slight negative deviation from linearity of melting temperature ( ) and glass transition temperature ( ) with the substitution of Co for Zn. In contrast, the new series displays a stronger negative deviation. These negative deviations from linearity indicate the mixed metal node effect in bimetallic ZIF-62 due to the structural mismatch between Co and Zn and to the difference in their electronic configurations. The new series involves both cobalt-rich and zinc-rich phases, whereas the standard one shows one homogeneous phase. Density functional theory calculations predict that the substitution of Co for Zn increases the bulk modulus of the ZIF crystals. This work indicates that the structure, melting behaviour, and mechanical properties of ZIFs can be tuned by metal node substitution and by varying the synthetic conditions. Both series of ZIFs have higher glass forming abilities due to their higher / ratios (0.77-0.84) compared to most good glass formers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8988268PMC
http://dx.doi.org/10.1039/d2ra00744dDOI Listing

Publication Analysis

Top Keywords

metal node
12
mixed metal
8
zeolitic imidazolate
8
imidazolate frameworks
8
zif crystals
8
conditions series
8
negative deviation
8
series
6
structure
5
node zeolitic
4

Similar Publications

Several studies were focused on the application of MIL-100(Fe) (FeO(OH)(HO)(BTC), HBTC is 1,3,5-benzene tricarboxylic acid) in the photo-Fenton reaction, but it still suffers from low efficiency. In this work, MIL-100(Fe) was synthesized at ambient conditions and low pHs using Fe(II) precursors in homogeneous aqueous media to develop a sample with high activity in the photo-Fenton reaction, even better than Fe-porphyrin metal-organic frameworks. The as-synthesized sample is highly crystalline with 30.

View Article and Find Full Text PDF

2H-NMR as a Practical Tool for Following MOF Formation: A Case Study of UiO-66.

Angew Chem Int Ed Engl

January 2025

Memorial University of Newfoundland, Chemistry, Department of Chemistry, 230 Elizabeth avenue, A1B 3X7, St. John's, CANADA.

Developing the mechanism for MOF formation is crucial for the rapid development of new materials. This work demonstrates that Deuterium-NMR spectroscopy is the optimal inter-laboratory methodology for understanding the in-situ kinetics of metal-organic framework (MOF) formation. This method is facile, affordable, and allows for the isolation and monitoring of individual reagents by using one deuterated component while the remaining components are protonated.

View Article and Find Full Text PDF

Objective: Extant imaging methods used for the proper identification of the parathyroid glands to prevent post-operative hypothyroidism associated with the resection of differentiated thyroid cancer (DTC) are limited by factors such as low specificity, high cost, and technical complexity. This study, therefore, sought to investigate the efficacy of the immunocolloidal gold strip method combined with nanocarbon negative imaging tracing technology for parathyroid gland imaging during radical resection of DTC in elderly patients.

Methods: A total of 100 elderly patients with DTC were enrolled and randomly divided into two groups: the control group and the observation group.

View Article and Find Full Text PDF

EOSnet: Embedded Overlap Structures for Graph Neural Networks in Predicting Material Properties.

J Phys Chem Lett

January 2025

Department of Physics, Rutgers University, Newark, New Jersey 07102, United States of America.

Graph Neural Networks (GNNs) have emerged as powerful tools for predicting material properties, yet they often struggle to capture many-body interactions and require extensive manual feature engineering. Here, we present EOSnet (Embedded Overlap Structures for Graph Neural Networks), a novel approach that addresses these limitations by incorporating Gaussian Overlap Matrix (GOM) fingerprints as node features within the GNN architecture. Unlike models that rely on explicit angular terms or human-engineered features, EOSnet efficiently encodes many-body interactions through orbital overlap matrices, providing a rotationally invariant and transferable representation of atomic environments.

View Article and Find Full Text PDF

Ca/Calmodulin-Dependent Protein Kinase II (CaMKII) Regulates Basal Cardiac Pacemaker Function: Pros and Cons.

Cells

December 2024

Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA.

The spontaneous firing of the sinoatrial (SA) node, the physiological pacemaker of the heart, is generated within sinoatrial nodal cells (SANCs) and is regulated by a "coupled-clock" pacemaker system, which integrates a "membrane clock", the ensemble of ion channel currents, and an intracellular "Ca clock", sarcoplasmic reticulum-generated local submembrane Ca releases via ryanodine receptors. The interactions within a "coupled-clock" system are modulated by phosphorylation of surface membrane and sarcoplasmic reticulum proteins. Though the essential role of a high basal cAMP level and PKA-dependent phosphorylation for basal spontaneous SANC firing is well recognized, the role of basal CaMKII-dependent phosphorylation remains uncertain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!