Cdc2-like kinase 4 (CLK4) inhibitors are of potential therapeutic value in many diseases particularly cancer. In this study, we combined extensive ligand-based pharmacophore exploration, ligand-receptor contact fingerprints generated by flexible docking, physicochemical descriptors and machine learning-quantitative structure-activity relationship (ML-QSAR) analysis to investigate the pharmacophoric/binding requirements for potent CLK4 antagonists. Several ML methods were attempted to tie these properties with anti-CLK4 bioactivities including multiple linear regression (MLR), random forests (RF), extreme gradient boosting (XGBoost), probabilistic neural network (PNN), and support vector regression (SVR). A genetic function algorithm (GFA) was combined with each method for feature selection. Eventually, GFA-SVR was found to produce the best self-consistent and predictive model. The model selected three pharmacophores, three ligand-receptor contacts and two physicochemical descriptors. The GFA-SVR model and associated pharmacophore models were used to screen the National Cancer Institute (NCI) structural database for novel CLK4 antagonists. Three potent hits were identified with the best one showing an anti-CLK4 IC value of 57 nM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982525 | PMC |
http://dx.doi.org/10.1039/d2ra00136e | DOI Listing |
Cancer Res
December 2024
West China Hospital of Sichuan University, Chengdu, Sichuan, China.
Cdc2-like kinase 1 (CLK1) has dual-specificity kinase ability to phosphorylate tyrosine and serine/threonine protein residues. CLK1 regulates many physiological processes and has been shown to contribute to multiple types of cancer. Here, we investigated the functional role of CLK1 during intrahepatic cholangiocarcinoma (ICC) development.
View Article and Find Full Text PDFCancer Sci
January 2025
Department of Hematology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
Multiple myeloma (MM) is closely related to abnormal RNA splicing in its pathogenesis. CDC2-like kinase-2 (CLK2) regulates RNA splicing by phosphorylating serine/arginine-rich splicing factors (SRSFs), but the role of CLK2 in MM remains undefined. This study was to explore the role and mechanism of CLK2 in MM.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China. Electronic address:
Targeted inhibition of the Wnt pathway is a promising strategy for treating NSCLC. CDC2-like kinase 2 (CLK2), a dual-specificity kinase responsible for phosphorylating serine/arginine-rich (SR) proteins, can modulate Wnt signaling through the alternative splicing of Wnt target genes, making CLK2 an attractive therapeutic target for NSCLC. In this study, we report the synthesis, optimization, and evaluation of CLK2 inhibitors that effectively suppress the proliferation of NSCLC cells, with the identification of the lead compound LBM22.
View Article and Find Full Text PDFMol Oncol
September 2024
Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Austria.
In advanced prostate cancer (PC), in particular after acquisition of resistance to androgen receptor (AR) signaling inhibitors (ARSI), upregulation of AR splice variants compromises endocrine therapy efficiency. Androgen receptor splice variant-7 (ARV7) is clinically the most relevant and has a distinct 3' untranslated region (3'UTR) compared to the AR full-length variant, suggesting a unique post-transcriptional regulation. Here, we set out to evaluate the applicability of the ARV7 3'UTR as a therapy target.
View Article and Find Full Text PDFProtein Sci
June 2024
Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.
Dysregulation of RNA splicing processes is intricately linked to tumorigenesis in various cancers, especially breast cancer. Cdc2-like kinase 2 (CLK2), an oncogenic RNA-splicing kinase pivotal in breast cancer, plays a significant role, particularly in the context of triple-negative breast cancer (TNBC), a subtype marked by substantial medical challenges due to its low survival rates. In this study, we employed a structure-based virtual screening (SBVS) method to identify potential CLK2 inhibitors with novel chemical structures for treating TNBC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!