Similar Publications

Although there has been some recent interest in the proton conductivity (σ) of highly stable carboxyl metal-organic frameworks (MOFs) made of tetravalent metal ions, given their potential applications in fuel cells and electrochemical sensing, research on MOFs constructed by hafnium(IV) ions needs to be expanded significantly. Based on this, we used two common and easily prepared phenylpoly(carboxylic acid) ligands, 1,2,4-phenyltricarboxylic acid and 1,2,4,5-phenyltetracarboxylic acid, to react with hafnium tetrachloride, respectively, creating two porous hafnium(IV)-based MOFs, () and UiO-66-(COOH)-Hf (), with the same structure as UiO-66-Hf but with different numbers of free carboxylic groups. A series of stability assays revealed that the two MOFs had excellent structural rigidity, including thermal and water stability.

View Article and Find Full Text PDF

The present study evaluated the potential of Ashoka, Saraca asoca leaf meal (SLM), in carp diets following fermentative processing with a tannase-producing fish gut bacterium, Bacillus subtilis (KP765736). The processing of SLM led to a significant (P < 0.05) reduction in major anti-nutrients (tannin, trypsin inhibitor, and crude fiber), while crude protein content increased.

View Article and Find Full Text PDF

Carboxyl and carbonyl groups of carbon dots co-coordinated assembly with Al to emission-enhanced aggregates for sensitive sensing and efficient removal.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China; Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China. Electronic address:

It is very challenging to prepare carbon dots (CDs) with aggregation-induced emission (AIE) property for simultaneous sensitive sensing and efficient removal. Herein, blue-emission CDs were facilely prepared by one-step solvothermal treatment of vine tea. Optical characterizations demonstrated that AIE phenomenon of CDs came from the restricted intramolecular motion.

View Article and Find Full Text PDF

Cellulose nanofibers reinforced carboxylated nitrile butadiene rubber coatings for improved corrosion protection of mild steel.

Int J Biol Macromol

January 2025

School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China. Electronic address:

The development of an efficient coating with comprehensive antimicrobial and anticorrosion properties for metals is crucial. The present study used a one-pot strategy to fabricate a high-performance nanocomposite coating of carboxylated nitrile butadiene rubber/cellulose nanofibers/zinc oxide (XNBR/CNF-ZnO), demonstrating excellent potential for application in the protection against metal corrosion. Eco-friendly CNF-ZnO nanomaterials, prepared using the in-situ generation method, were used as reinforcing fillers, while XNBR was used as the matrix material.

View Article and Find Full Text PDF

Investigation of the anti-Huanglongbing effects using antimicrobial lipopeptide and phytohormone complex powder prepared from MG-2 fermentation.

Front Microbiol

December 2024

National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, National Fruit Free-Virus Germplasm Resource Indoor Conservation Center, Department of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China.

Global citrus production has been severely affected by citrus Huanglongbing (HLB) disease, caused by Candidatus Liberibacter asiaticus (Clas), and the development of effective control methods are crucial. This study employed antimicrobial lipopeptide and phytohormone complex powder (L1) prepared from the fermentation broth of the endophytic plant growth promoting bacterium (PGPB) of strain MG-2 to treat Liberibacter asiaticus (Las)-infected ' 'Chun Jian' plants. Real-time fluorescence quantitative polymerase chain reaction (qPCR) and PCR were employed for disease detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!