The use of flow methodology allows the use of alkynylphenyl vinyl ethers (benzo-fused 1,7 enynes) as substrates for the intramolecular Pauson-Khand reaction (PKr). Forced temperature and pressure conditions during a short reaction time minimize the substrate decomposition allowing the formation of the PK adduct. Substrates substituted at the internal position of the double bond and with internal triple bonds give better yields. The resulting products are cyclopentabenzofuranones present in diverse natural products and drugs that can be further functionalised.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982164PMC
http://dx.doi.org/10.1039/d2ra01062cDOI Listing

Publication Analysis

Top Keywords

pauson-khand reaction
8
alkynylphenyl vinyl
8
vinyl ethers
8
study pauson-khand
4
reaction flow
4
flow alkynylphenyl
4
ethers synthesis
4
synthesis tricyclic
4
tricyclic multisubstituted
4
multisubstituted benzofurans
4

Similar Publications

We report a stereo-differentiating dynamic kinetic asymmetric Rh(I)-catalyzed Pauson-Khand reaction, which provides access to an array of thapsigargin stereoisomers. Using catalyst-control, a consistent stereochemical outcome is achieved at C2─for both matched and mismatched cases─regardless of the allene-yne C8 stereochemistry. The stereochemical configuration for all stereoisomers was assigned by comparing experimental vibrational circular dichroism (VCD) and C NMR to DFT-computed spectra.

View Article and Find Full Text PDF

Total Synthesis of (+)-Mannolide B.

J Am Chem Soc

December 2024

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, 38 Xueyuan Road, Beijing 100191, China.

Article Synopsis
  • (+)-Mannolide B features a complex hexacyclic structure with multiple stereocenters, presenting challenges for its total synthesis.
  • A successful strategy involved ring-closing metathesis starting from (-)-methyl jasmonate to construct its tetracyclic carbon skeleton.
  • The synthesis included various attempts, ultimately culminating in a Pauson-Khand reaction and a Büchner-Curtius-Schlotterbeck reaction, leading to the first total synthesis of (+)-mannolide B in 24 steps.
View Article and Find Full Text PDF

Total Synthesis of Euphorbialoid A.

J Am Chem Soc

December 2024

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Euphorbialoid A () belongs to the rare diterpenoid family of premyrsinanes and exhibits potent anti-inflammatory effects. The 5/7/6/3-membered carbocycle (ABCD-ring) of contains 11 contiguous stereocenters and seven oxygen-containing functional groups. Moreover, four of the six hydroxy groups of are concentrated in the southern sector and flanked by four structurally different acyl groups.

View Article and Find Full Text PDF

Total Synthesis of (-)-Bipolarolide D.

JACS Au

November 2024

Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.

(-)-Bipolarolide D is an ophiobolin-derived sesteterpenoid with a unique tetraquinane (5/5/5/5) tetracyclic skeleton decorated with a diverse set of functionalities. Herein we report a robust, scalable, and efficient total synthesis of this natural product in 1.8% overall yield.

View Article and Find Full Text PDF

Enantioselective catalytic reactions have a significant impact on chemical synthesis, and they are important components in an experimental chemist's toolbox. However, development of asymmetric catalysts often relies on the chemical intuition and experience of a synthetic chemist, making the process both time-consuming and resource-intensive. The machine-learning-assisted reaction discovery can serve as a very efficient platform for obtaining high-performing catalysts in a time-economical manner without extensive experimentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!