Suppressing intramolecular vibration of non-fullerene acceptors (NFAs) by molecular rigidification has been proven to be an effective way to reduce the non-radiative recombination loss and energetic disorder of organic solar cells (OSCs). Thus far, extensive attention has been drawn on rigidifying the fused-ring backbones of NFAs, whereas the highly flexible alkyl side chains are barely concerned. Herein, an effective strategy of side chain rigidification by introducing a spiro-ring is developed for the first time and applied to construct the NFA of Spiro-F. Compared to its counterpart F-2F, the rigid spirocyclic side chain can constrain the vibrational-rotational motion and control the orientation of two highly flexible -octyl chains effectively. As a result, an optimal molecular packing with enhanced intermolecular actions and lower energetic disorder is achieved by Spiro-F, endowing the OSC based on the as cast blend of PM6:Spiro-F with a significantly improved PCE of 13.56% and much reduced recombination loss compared to that of PM6:F-2F. This work provides a feasible strategy to achieve efficient OSCs through the rigidification of the side chain and could boost the PCEs further if applied to some other efficient systems with smaller bandgaps.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981562PMC
http://dx.doi.org/10.1039/d2ra00253aDOI Listing

Publication Analysis

Top Keywords

side chain
16
recombination loss
12
energetic disorder
12
spirocyclic side
8
organic solar
8
solar cells
8
reduced recombination
8
loss energetic
8
highly flexible
8
chain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!