In this study, a novel periodic mesoporous organosilica (PMO) containing diamide-diacid bridges was conveniently prepared using ethylenediaminetetraacetic dianhydride to support Cu(ii) species and affording supramolecular Cu@EDTAD-PMO nanoparticles efficiently. Fourier transform infrared (FT-IR) and energy dispersive X-ray (EDX) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET) analysis, and high-resolution transmission electron microscopy (HRTEM) results confirmed the successful synthesis of Cu@EDTAD-PMO. The stabilized Cu(ii) nanoparticles inside the mesochannels of the new PMO provided appropriate sites for selective oxidation of different benzyl alcohol derivatives to their corresponding benzaldehydes and subsequent Knoevenagel condensation with malononitrile. Therefore, Cu@EDTAD-PMO can be considered as a multifunctional heterogeneous catalyst, which is prepared easily through a green procedure and demonstrates appropriate stability with almost no leaching of the Cu(ii) nanoparticles into the reaction medium, and easy recovery through simple filtration. The recycled Cu@EDTAD-PMO was reused up to five times without significant loss of its catalytic activity. The stability, recoverability, and reusability of the designed heterogeneous catalyst were also studied under various reaction conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978704PMC
http://dx.doi.org/10.1039/d1ra06509bDOI Listing

Publication Analysis

Top Keywords

oxidation benzyl
8
electron microscopy
8
cuii nanoparticles
8
heterogeneous catalyst
8
supported copper
4
copper diamide-diacid-bridged
4
diamide-diacid-bridged pmo
4
pmo efficient
4
efficient hybrid
4
hybrid catalyst
4

Similar Publications

Phosphole and azaphosphole derivatives with triazole functionalities, [CH{1,2,3-NCCHC(PPh)}] (L1) and [CH{1,2,3-NC(Ph)C(PPh)}] (L2) were synthesized by reacting [(CH)(1,2,3-NC = CH--Br-CH)] and [(-Br-CH)(1,2,3-NC = CHCH)] with BuLi followed by the addition of dichlorophenylphosphine. The reactions of L1 and L2 with an excess of 30% HO afforded phosphole oxides [CH{1,2,3-NCCHC(P(O)Ph)}] (L1O) and [CH{1,2,3-NC(Ph)C(P(O)Ph)}] (L2O) as white crystalline solids. Stoichiometric reactions of L1 and L2 with [Ru(η--cymene)Cl] in CHCl yielded [RuCl(η--cymene)(L1-κ-)] (1) and [RuCl(η--cymene)(L2-κ-)] (2), respectively.

View Article and Find Full Text PDF

Converting biomass-derived molecules like 5-hydroxymethylfurfural (HMF) into value-added products alongside hydrogen production using renewable energy offers significant opportunities for sustainable chemical and energy production. Yet, HMF electrooxidation requires strong alkaline conditions and membranes for efficient conversion. These harsh conditions destabilize HMF, leading to humin formation and reduced product purity, meanwhile membranes increase costs.

View Article and Find Full Text PDF

Suppressing over-oxidation is a crucial challenge for various chemical intermediate synthesis in heterogeneous catalysis. The distribution of oxidative species and the substrate coverage, governed by the direction of electron transfer, are believed to influence the oxidation extent. In this study, we present an experimental realization of surface coverage modulation on a photoelectrode using a photo-induced charge activation method.

View Article and Find Full Text PDF

Water-assisted electrocatalytic oxidation of alcohols into valuable chemicals is a promising strategy to circumvent the sluggish kinetics of water oxidation, while also reducing cell voltage and improving energy efficiency. Recently, transition metal (TM)-based catalysts have been investigated for anodic alcohol oxidation, but success has been limited due to competition from the oxygen evolution reaction (OER) within the working regime. In this study, NiCo-based Prussian blue analog (PBA) was electrochemically activated at the anodic potential to produce a Co-Ni(O)OH active catalyst with a nanosheet-like architecture.

View Article and Find Full Text PDF

Visible-Light-Induced -Quinone Methides Formation in Situ Using -Alkylarenols as Precursors for Tandem [4 + 2] Cycloaddition Reaction.

Org Lett

December 2024

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.

Reported herein is the generation of -quinone methides (-QMs) via metal-free visible-light-induced oxidation of -alkylarenols, as well as their subsequent reaction with olefins to afford chromans in good to excellent yields (up to 91%). The key is the selective activation of the benzylic C(sp)-H bond of -alkylarenols via single electron transfer (SET) and the formation of -QMs via hydrogen atom transfer (HAT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!