Based on the establishment of a stable anaerobic ammonia oxidation treatment system in 100 days, the impact resistances of two different anammox fiber fillers (the curtain filler: R1 and the bundle filler: BR) were compared. Furthermore, the effect of HCO concentration on the bundle filler system was also investigated, the results have shown that the activity of the two anammox fiber fillers was not inhibited when the NO -N concentration was lower than 750 mg L (FNA = 0.085 mg L), while it was significantly suppressed at 900 mg L (FNA = 0.118 mg L). However, the two fiber fillers could be recovered and exhibit a good impact resistance reduction of the substrate concentration. On day 95, the structure of the bundle filler was more conducive to the stable attachment, proliferation, and aggregation of anammox bacteria. Dominant anammox bacteria in both the curtain and bundle fillers were Kuenenia, which accounted for 25.9% and 35.9% of the total population, respectively. When the influent HCO concentration was 900 mg L, the bundled fiber filler had the highest total nitrogen (TN) removal efficiency, which reached 89.0%. Even though it was inhibited under 2000 mg L of HCO concentration, the reactor was able to recover within one week by reducing the substrate concentration. In addition, the HCO inhibition mechanism was independent of pH, which resulted in high FA content.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978840 | PMC |
http://dx.doi.org/10.1039/d1ra07982d | DOI Listing |
Anal Chem
January 2025
Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8565, Japan.
This study presents a novel approach that combines thermogravimetric analysis with time-of-flight mass spectrometry (TG-TOFMS), principal component analysis (PCA), and Kendrick mass defect (KMD) analysis─referred to as TG-PCA-KMD─to investigate molecular-scale structural changes and quantitatively assess the progression of thermo-oxidative degradation in glass fiber reinforced polypropylene (GF/PP). TG-TOFMS enables the simultaneous and sensitive detection of both structural changes due to thermo-oxidative degradation and compositional changes in the filler and matrix. PCA and KMD analysis are crucial for identifying specific ion series derived from the degraded PP matrix in the high-resolution mass spectra obtained through TG-TOFMS.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Water Resources and Construction Engineering, Shihezi University, Shihezi 832000, China.
The collapse of surface goaf beneath highways can result in instability and damage to roadbeds. However, filling the goaf areas with foam concrete can significantly enhance the stability of the roadbeds while considerably reducing the costs of filling materials. This study analyzes the effects on destructive characteristics, mechanical properties, stress-strain curve features, and relevant metrics, while also observing the microstructure of basalt fiber-calcined gangue-silty clay foam concrete (BF-CCG-SCFC).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a highly promising biodegradable and bio-based thermoplastic recognized for its environmental benefits and potential versatility. However, its industrial adoption has been limited due to its inherent brittleness and suboptimal processability. Despite these challenges, PHBV's performance can be tailored for a wide range of applications through strategic modifications, particularly by blending it with other biodegradable polymers or reinforcing it with natural fibers and bio-based fillers.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Mechanical Engineering, Changwon National University, Changwon, Gyeongsangnam 51140, South Korea.
The current work presents the flame-retardant performance of hybrid polypropylene composites, reinforced with specific short woven flax fabrics (SWFs), short basalt fibers (BFs), and rice husk powder (RHP), using polypropylene grafted maleic anhydride (MAPP) as the coupling agent. Horizontal burning test (HBT), microcalorimeter test (MCT), and cone calorimeter test (CCT) were conducted on these composites. The formulations used were 25% SWF/PP, 25% SWF/20% BF/PP, and 25% SWF/20% BF/PP with 6% RHP and 25% SWF/20% BF/PP with varying RHP contents (6, 12, and 18%) in combination with 6% MAPP.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27607, United States.
Albeit there is widespread application of thermally conductive polymer composites, one challenge is their typical negative temperature dependence on thermal conductivity (TDTC) due to the mismatch in thermal expansion between the polymer and fillers, creating voids at the interfaces. Inspired by the hierarchical structure of snakeskin, where rigid scales and a soft intergap manage expansion, we designed a segregated structure by coating a high-expansion high impact polystyrene (HIPS)/graphite (Gt) composite with a copper alloy. We hypothesize that the Cu alloy restricts the thermal expansion of HIPS/Gt while forming a pseudoconductive network, enhancing TDTC and thermal conductivity (TC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!