DiaNat-DB: a molecular database of antidiabetic compounds from medicinal plants.

RSC Adv

Instituto de Química, Universidad Nacional Autónoma de México Mexico City 04510 Mexico +52 55 56224770 ext. 46614.

Published: January 2021

Natural products are an invaluable source of molecules with a large variety of biological activities. Interest in natural products in drug discovery is documented in an increasing number of publications of bioactive secondary metabolites. Among those, medicinal plants are one of the most studied for this endeavor. An ever thriving area of opportunity within the field concerns the discovery of antidiabetic natural products. As a result, a vast amount of secondary metabolites are isolated from medicinal plants used against diabetes mellitus but whose information has not been organized systematically yet. Several research articles enumerate antidiabetic compounds, but the lack of a chemical database for antidiabetic metabolites limits their application in drug development. In this work, we present DiaNat-DB, a comprehensive collection of 336 molecules from medicinal plants reported to have or antidiabetic activity. We also discuss a chemoinformatic analysis of DiaNat-DB to compare antidiabetic drugs and natural product databases. To further explore the antidiabetic chemical space based on DiaNat compounds, we searched for analogs in ZINC15, an extensive database listing commercially available compounds. This work will help future analyses, design, and development of new antidiabetic drugs. DiaNat-DB and its ZINC15 analogs are freely available at http://rdu.iquimica.unam.mx/handle/20.500.12214/1186.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694643PMC
http://dx.doi.org/10.1039/d0ra10453aDOI Listing

Publication Analysis

Top Keywords

medicinal plants
16
natural products
12
antidiabetic
8
database antidiabetic
8
antidiabetic compounds
8
secondary metabolites
8
antidiabetic drugs
8
dianat-db
4
dianat-db molecular
4
molecular database
4

Similar Publications

Essential oil of (L.) ssp. (Apiaceae) flower: chemical composition, antimicrobial potential, and insecticidal activity on (L.).

Z Naturforsch C J Biosci

January 2025

Laboratory of Molecular Chemistry and Natural Substances, Faculty of Sciences of Meknes, 11201 Zitoune-Meknes B.P, Meknes, Meknes, Morocco.

In order to search for new chemotypes and to carry out a comparative study with the literature, the current study investigated the chemical composition of the essential oil of the flowers of (L.) ssp. using gas chromatography coupled with mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Interactions between aromatic side chains of amino acids stabilize the fold and assembly of short peptides. The aromatic π…π and C-H…π interactions have been widely explored in the design of short peptides with specific folding and aggregation patterns. In the present study, we investigated the effect of homologated phenylalanine side chains on the conformation and assembly of peptide helices through X-ray crystallographic structure determination and analysis of five pentapeptides.

View Article and Find Full Text PDF

Light quality regulates growth and flavonoid content in a widespread forest understorey medicinal species Georgi.

Front Plant Sci

December 2024

CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.

Introduction: Introduction: Light is not only essential for plant photosynthesis and growth, but also acts as a signal to regulate its secondary metabolism. Despite the influence of light quality on the yield and flavonoid compounds in commercial crops is well-documented, its role in regulating wild understorey species, particularly medicine plants whose flavonoid biosynthesis driven by multiple spectral regions of canopy sunlight, is less understood.

Methods: To address it, we conducted a light-quality manipulation experiment on Georgi, a widespread understorey medicinal species, with light-emitting diodes (LED).

View Article and Find Full Text PDF

Background And Objectives: Medicinal plants are the primary treatment for many infectious and non-infectious diseases. In this study, we evaluated the antiviral activity of against herpes simplex viruses 1 and 2, and compared it with the antiviral drug acyclovir.

Materials And Methods: In our experimental study, was dissolved in DMSO, then diluted in DMEM medium.

View Article and Find Full Text PDF

Nature is a valuable resource, supplying remedies for the treatment of all diseases. Plant kingdom stands for a plethora of natural compounds that are well known for their utilization in therapeutic applications. They may pave the way for the development of new mediators with appropriate efficacy in many pathological disorders in the future.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!