Herein, the proliferation and osteogenic potential of human mesenchymal stem cells (hMSCs) on the disordered and ordered porous morphology of the titania surface and titania surface modified by hydroxyapatite (HA) are compared for the first time. In 5 days, the MTT-assay showed that the ordered porous morphology of electrochemically fabricated titania nanotubes (TNT) and TNT with chemically deposited hydroxyapatite (TNT-HA) was favorable for stem cell proliferation. In 14 days, RT-qPCR demonstrated that the disordered porous morphology of the sonochemically produced titania mesoporous surface (TMS) and TMS modified by the chemical deposition of HA (TMS-HA) led to the differentiation of hMSCs into the osteogenic direction in the absence of osteogenic inductors. These results originate from the mechanism of mechanotransduction, which sheds a light on the interaction of mesenchymal stem cells with the porous interface through focal adhesion, regulating the expression of genes determining stem cell self-renewal and osteogenic differentiation. The strong focal adhesion of hMSCs adjusted by the disordered TMS and TMS-HA is enough to induce osteogenic differentiation with the delay of cellular self-renewal. The weak focal adhesion of hMSCs tuned by the ordered TNT and TNT-HA affects only cellular self-renewal. The present research makes a new contribution to nanomedicine and engineering of porous implant interfaces for the replacement of bone injuries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694191PMC
http://dx.doi.org/10.1039/d0ra08271fDOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
12
mesenchymal stem
12
stem cells
12
porous morphology
12
focal adhesion
12
morphology titania
8
proliferation osteogenic
8
human mesenchymal
8
ordered porous
8
titania surface
8

Similar Publications

The rapid and efficient bone regeneration is still in unsatisfactory outcomes, demonstrating alternative strategy and molecular mechanism is necessary. Nanoscale biomaterials have shown some promising results in enhancing bone regeneration, however, the detailed interaction mechanism between nanomaterial and cells/tissue formation is not clear. Herein, a molecular-based inorganic-organic nanomaterial poly(citrate-siloxane) (PCS) is reported which can rapidly enhance osteogenic differentiation and bone formation through a special interaction with the cellular surface communication network factor 3 (CCN3), further activating the Wnt10b/β-catenin signaling pathway.

View Article and Find Full Text PDF

Mineral Stress Drives Loss of Heterochromatin: An Early Harbinger of Vascular Inflammaging and Calcification.

Circ Res

January 2025

British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.).

Background: Vascular calcification is a detrimental aging pathology markedly accelerated in patients with chronic kidney disease. Prelamin A is a biomarker of vascular smooth muscle cell aging that accelerates calcification however the mechanisms remain undefined.

Methods: Vascular smooth muscle cells were transduced with prelamin A using an adenoviral vector and epigenetic modifications were monitored using immunofluorescence and targeted polymerase chain reaction array.

View Article and Find Full Text PDF

Introduction: Bone aging is linked to changes in the lineage differentiation of bone marrow stem cells (BMSCs), which show a heightened tendency to differentiate into adipocytes instead of osteoblasts. The therapeutic potential of irisin in addressing age-related diseases has garnered significant attention. More significantly, irisin has the capacity to enhance bone mass recovery and sustain overall bone health.

View Article and Find Full Text PDF

Background: Given the risks associated with autologous bone transplantation and the limitations of allogeneic bone transplantation, scaffolds in bone tissue engineering that incorporate bioactive peptides are highly recommended. Teriparatide (TPTD) plays a significant role in bone defect repair, although achieving controlled release of TPTD within a bone tissue engineering scaffold remains challenging. This work reports a new approach for treatment of teriparatide using a water-in-oil-in-water (w/o/w) microspheres be equipped on gelatin (GEL)/Poly lactic-glycolic acid (PLGA)/attapulgite (ATP) scaffold.

View Article and Find Full Text PDF

GelMA Hydrogels Integrated With aptamer CH6-Functionalized Tetrahedral DNA Nanostructures for Osteoporotic Mandibular Regeneration.

Macromol Biosci

January 2025

Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China.

Osteoporotic bone regeneration is challenging due to impaired bone formation. Tetrahedral DNA nanostructures (TDN), promising nucleic acid nanomaterials, have garnered attention for their potential in osteoporotic mandibular regeneration owing to their ability to enhance cellular activity and promote osteogenic differentiation. Osteoblasts play a critical role in bone regeneration; however, intracellular delivery of TDN into osteoblasts remains difficult.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!