The effect of different temperatures used in microwave pretreatment on enhancing methane production of corn straw was comparatively studied in this paper through the analysis of the physicochemical properties of the pretreated materials and the methane yield during anaerobic digestion. Analytic methods such as scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction were performed to detect the surface chemistry of the pretreated corn straw. The results indicated that microwave pretreatment could effectively disrupt the lignocellulosic structure to release cellulose, hemicellulose, and related derivatives and make them available for the process of anaerobic digestion. The outcome of the methanogenic assay demonstrated that methane production could be significantly improved by 73.08% concerning the variation of the temperatures in microwave pretreatment. This study provides technical support for pretreatment methods of lignocellulose materials and deems that microwave pretreatment boosts methane yield efficiently during the process of anaerobic digestion of lignocellulosic materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693983PMC
http://dx.doi.org/10.1039/d0ra09867aDOI Listing

Publication Analysis

Top Keywords

anaerobic digestion
16
microwave pretreatment
16
corn straw
12
physicochemical properties
8
temperatures microwave
8
methane production
8
methane yield
8
process anaerobic
8
microwave
5
pretreatment
5

Similar Publications

Genes in microorganisms influence the biological processes in anaerobic digestion (AD). However, key genes involved in the four metabolic steps (hydrolysis, acidogenesis, acetogenesis, and methanogenesis) remain largely unexplored. This study investigated the abundance and distribution of key functional genes in full-scale anaerobic digesters processing food waste (FWDs) and municipal wastewater (MWDs) through 16S rRNA gene and shotgun metagenomic analysis.

View Article and Find Full Text PDF

The disposal of municipal solid waste (MSW) in urban areas is a big issue nowadays in most of the countries. Developing countries like India are struggling with the continuous indiscriminate disposal of MSW due to rapid increase in the urbanization, industrialization, and human population growth. The mismanagement of MSW causes adverse environmental impacts, public health risks, and other socio-economic problems.

View Article and Find Full Text PDF

Microbial transitions and degradation pathways driven by butyrate concentration in mesophilic and thermophilic anaerobic digestion under low hydrogen partial pressure.

Bioresour Technol

December 2024

Civil Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland; Ryan Institute, University of Galway, Ireland; SFI MaREI Research Centre, University of Galway, Ireland. Electronic address:

Butyrate accumulation significantly affects the efficiency and stability of anaerobic digestion, while its specific impact on methane yield and butyrate degradation remains unclear. This study investigated how butyrate concentrations (2.0, 5.

View Article and Find Full Text PDF

Hydrothermal pretreatment (HTP) is used to increase the biochemical methane potential (BMP) of food waste (FW). The formation of melanoidins will seriously affect the microbial activity and methane production during anaerobic digestion (AD). Based on spectroscopic methods, similarities and heterogeneity of melanoidins from different sources were investigated, and the wide peak band (260-350 nm) in the ultraviolet region and the differences of amide groups of fructose-amino acid system, fructose-casein system and FW system were revealed.

View Article and Find Full Text PDF

The pharmaceutical industry plays a crucial role in driving global economic growth but also poses substantial environmental challenges, particularly in the efficient treatment of production wastewater. This study investigates the efficacy of micro-nano bubble (MNB) ozonation for treating high-strength ibuprofen (IBU)-laden wastewater (49.9 ± 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!