Recently, ultrathin two-dimensional (2D) metallic vanadium dichalcogenides have attracted widespread attention because of the charge density wave (CDW) phase transition and possible ferromagnetism. Herein, we report the synthesis and temperature-dependent Raman characterization of the 2D vanadium ditelluride (VTe). The synthesis is done by atmospheric pressure chemical vapor deposition (APCVD) using vanadium chloride (VCl) precursor on fluorphlogopite mica, sapphire, and h-BN substrates. A large area of the thin film with thickness ∼10 nm is grown on the hexagonal boron nitride (h-BN) substrate. Temperature-dependent Raman characterization of VTe is conducted from room temperature to 513 K. Remarkable changes of Raman modes at around 413 K are observed, indicating the structural phase transition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693834 | PMC |
http://dx.doi.org/10.1039/d0ra07868a | DOI Listing |
Sci Rep
January 2025
Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
Two-Dimensional transition metal dichalcogenides have been the subject of extensive attention thanks to their unique properties and atomically thin structure. Because of its unprecedented room-temperature magnetic properties, iron-doped MoS (Fe:MoS) is considered the next-generation quantum and magnetic material. It is essential to understand Fe:MoS's thermal behavior since temperature and thermal load/activation are crucial for their magnetic properties and the current nano and quantum devices have been severely limited by thermal management.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
MgZnO possesses a tunable bandgap and can be prepared at relatively low temperatures, making it suitable for developing optoelectronic devices. MgZnO (~0.1) films were grown on sapphire by metal-organic vapor phase epitaxy under different substrate-growth temperatures of 350-650 °C and studied by multiple characterization technologies like X-ray diffraction (XRD), spectroscopic ellipsometry (SE), Raman scattering, extended X-ray absorption fine structure (EXAFS), and first-principle calculations.
View Article and Find Full Text PDFRSC Adv
December 2024
Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 Wrocław 50-370 Poland.
Layered lead halide perovskites are attractive materials for optoelectronic applications. In this work, temperature-dependent photoluminescence (PL) as well as pressure-dependent Raman and PL studies of lead bromide comprising small disc shape 1,2,4-triazolium cations (Tz) are reported. Temperature-dependent studies reveal that at room-temperature (RT) TzPbBr exhibits narrow emission at 2.
View Article and Find Full Text PDFChem Sci
December 2024
Nikolayev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences 630090 Novosibirsk Russia
Radical lanthanide complexes are appealing platforms to investigate the possibility to engineer relevant magnetic couplings between the two magnetic centers by exploiting the strongly donating magnetic orbitals of the radical. In this paper, we report a spectroscopic and magnetic study on [LnRad(NO)], where Ln = Eu or Lu and Rad is the tridentate tripodal nitroxyl radical 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl. A thorough magnetic investigation by Electron Paramagnetic Resonance (EPR) spectroscopy and magnetometry, fully supported by calculations, allowed us to unravel an unprecedentedly large antiferromagnetic coupling between the Eu and the radical ( = +19.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
Institut für Festkörperelektronik, Technische Universität Wien, Gußhausstraße 25, 1040 Vienna, Austria.
An instrument for the simultaneous characterization of thin films by Raman spectroscopy and electronic transport down to 3.7 K has been designed and built. This setup allows for the in situ preparation of air-sensitive samples, their spectroscopic characterization by Raman spectroscopy with different laser lines and five-probe electronic transport measurements using sample plates with prefabricated contacts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!