Synthesis of metal nanoparticles using plant extracts is one of the most simple, convenient, economical, and environmentally friendly methods that mitigate the involvement of toxic chemicals. Hence, in recent years, several eco-friendly processes for the rapid synthesis of silver nanoparticles have been reported using aqueous extracts of plant parts such as the leaf, bark, roots, This review summarizes and elaborates the new findings in this research domain of the green synthesis of silver nanoparticles (AgNPs) using different plant extracts and their potential applications as antimicrobial agents covering the literature since 2015. While highlighting the recently used different plants for the synthesis of highly efficient antimicrobial green AgNPs, we aim to provide a systematic in-depth discussion on the possible influence of the phytochemicals and their concentrations in the plants extracts, extraction solvent, and extraction temperature, as well as reaction temperature, pH, reaction time, and concentration of precursor on the size, shape and stability of the produced AgNPs. Exhaustive details of the plausible mechanism of the interaction of AgNPs with the cell wall of microbes, leading to cell death, and high antimicrobial activities have also been elaborated. The shape and size-dependent antimicrobial activities of the biogenic AgNPs and the enhanced antimicrobial activities by synergetic interaction of AgNPs with known commercial antibiotic drugs have also been comprehensively detailed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8694026 | PMC |
http://dx.doi.org/10.1039/d0ra09941d | DOI Listing |
Klin Mikrobiol Infekc Lek
June 2023
Department of Clinical Microbiology, Pardubice Hospital, Czech Repubic, e-mail:
Objectives: The use of nonadherent dressings is part of care for chronic wounds. In this paper, we present the results of in vitro activity of several such dressings on bacteria most commonly found in chronic wounds.
Material And Methods: Selected bacterial strains were isolated from chronic wounds of patients in Pardubice Hospital in the period from February to May 2022.
Discov Nano
January 2025
National Nanotechnology Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 1452 XV de Novembro St., São Carlos, SP, 13560-970, Brazil.
Multifunctional membranes applied to biomedical materials become attractive to support the biological agents and increase their properties. In this study, biopolymeric fibers based on polycaprolactone (PCL) and pectin (PEC) were reinforced with faujasite zeolite (FAU) for cloxacillin antibiotic (CLX) loading. FAU with a high specific surface area (347 ± 8 m g), high crystallinity and particles with a diameter of up to 100 nm were produced under optimized synthesis conditions (100 °C/4 h).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Ciprofloxacin (CIP) is an extensively used broad-spectrum, fluoroquinolone antibiotic used for treating diverse bacterial infections. Effluent treatment plants (ETPs) worldwide lack technologies to detect or remediate antibiotics. CIP reaches the aquatic phase primarily due to inappropriate disposal practices, lack of point-of-use sensing, and preloaded activated charcoal filter at ETPs.
View Article and Find Full Text PDFInt Microbiol
January 2025
Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
Olive trees are susceptible to various diseases, notably root rot caused by Pythium spp., which presents significant challenges to cultivation. Conventional chemical control methods have limitations, necessitating exploration of eco-friendly alternatives like biological control strategies.
View Article and Find Full Text PDFBackground: The aim of this study was to explore the value of heparin-binding protein (HBP) in the early recognition of sepsis coagulopathy (SIC) and the prognosis of sepsis patients.
Methods: A retrospective analysis was performed for 139 patients with sepsis admitted to the Intensive Care Unit (ICU) of Hefei Third People's Hospital from April 2022 through April 2024. The clinical baseline data, disease scores [sequential organ failure (SOFA) score, acute physiology and chronic health status (APACHE II) score, and SIC score], inflammatory markers [HBP, procalcitonin (PCT), and interleukin 6 (IL-6)], coagulation-related indexes [platelet count (PLT), prothrombin time (PT), prothrombin time international normalized ratio (PT-INR), activated partial thromboplastin time (APTT), fibrinogen (Fib), and D dimer (D-D)], and the survival time and 28-day prognosis of all patients were observed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!