A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrocatalytic oxygen reduction by a Co/CoO@N-doped carbon composite material derived from the pyrolysis of ZIF-67/poplar flowers. | LitMetric

Catalysts used for the oxygen reduction reaction (ORR) are crucial to fuel cells. However, the development of novel catalysts possessing high activity at a low cost is very challenging. Recently, extensive research has indicated that nitrogen-doped carbon materials, which include nonprecious metals as well as metal-based oxides, can be used as excellent candidates for the ORR. Here, Co/CoO@N-doped carbon (NC) with a low cost and highly stable performance is utilized as an ORR electrocatalyst through the pyrolysis of an easily prepared physical mixture containing a cobalt-based zeolite imidazolate framework (ZIF-67 precursor) and biomass materials from poplar flowers. Compared with the pure ZIF-derived counterpart (Co@NC) and PL-bio-C, the as-synthesized electrocatalysts show significantly enhanced ORR activities. The essential roles of doped atoms (ZIF-67 precursor) in improving the ORR activities are discussed. Depending mainly on the formation of Co-CoO active sites and abundant nitrogen-containing groups, the resulting Co/CoO@NC catalyst exhibits good electroactivity (onset and half-wave potentials: = 0.94 V and = 0.85 V, respectively, and a small Tafel slope of 90 mV dec) compared to Co@NC and PL-bio-C and follows the 4-electron pathway with good stability and methanol resistance. The results of this study provide a reference for exploring cobalt-based N-doped biomass carbon for energy conversion and storage applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693794PMC
http://dx.doi.org/10.1039/d0ra09615fDOI Listing

Publication Analysis

Top Keywords

oxygen reduction
8
co/coo@n-doped carbon
8
low cost
8
zif-67 precursor
8
co@nc pl-bio-c
8
orr activities
8
orr
5
electrocatalytic oxygen
4
reduction co/coo@n-doped
4
carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!