This study reports a new type of artificial nanozyme based on Hemin-doped-HKUST-1 (HKUST-1, also referred to as MOF-199; a face-centered-cubic MOF containing nanochannels) as a redox mediator for the detection of dopamine (DA). Hemin-doped-HKUST-1 was successfully synthesized by one-pot hydrothermal method, which was combined with reduced graphene oxide (rGO) modified on a glassy carbon electrode (GCE) to construct a sensor (Hemin-doped HKUST-1/rGO/GCE). The morphology and structure of Hemin-doped-HKUST-1 were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and infrared spectra (IR) techniques. The Hemin-doped HKUST-1/rGO nanozyme showed an excellent electrocatalytic activity for DA oxidation, which is due to the enhanced Hemin activity through the formation of a metal-organic framework (MOFs) and the synergy between the Hemin-doped HKUST-1 and rGO in nanozyme. The resulted sensor exhibited a high sensitivity of 1.224 μA μM, with a lower detection limit of 3.27 × 10 M (S/N = 3) and a wide linear range of 0.03-10 μM for DA detection. In addition, due to the stabilizing effect of MOFs on heme, the sensor showed satisfactory stability and has been successfully applied to the detection of DA in serum samples, indicating that this work has potential value in clinical work.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693727 | PMC |
http://dx.doi.org/10.1039/d0ra08224d | DOI Listing |
Brain Stimul
December 2024
Department of Electrical and Computer Eng., Worcester Polytechnic Inst., Worcester MA USA; Department of Mathematical Sciences, Worcester Polytechnic Inst., Worcester MA USA.
Background: Modeling brain stimulation at the microscopic scale may reveal new paradigms for various stimulation modalities.
Objective: We present the largest map to date of extracellular electric field distributions within a layer L2/L3 mouse primary visual cortex brain sample. This was enabled by the automated analysis of serial section electron microscopy images with improved handling of image defects, covering a volume of 250 × 140 × 90 μm³.
J Colloid Interface Sci
December 2024
School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China. Electronic address:
Although Z-scheme heterojunction composites have been widely studied in photocatalysis, in-depth investigation of oxygen vacancies (Ov) in the Z-scheme photocatalysts is still rare. Herein, an oxygen vacancies modified NU-1000/BiOCl-Ov composite with Z-scheme heterojunction was rationally designed and fabricated. The combination of X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) experiment verified the presence of oxygen vacancies, meanwhile the Z-scheme charge transfer across the heterojunction interface was confirmed in detail by the in situ-XPS, Kelvin probe force microscope (KPFM) studies, ultraviolet photoelectron spectroscopy (UPS), EPR radical capture experiment, as well as density functional theory (DFT) calculation.
View Article and Find Full Text PDFJ Prosthet Dent
December 2024
Assistant Professor, Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand. Electronic address:
Statement Of Problem: Three-dimensional (3D) printing and milling technologies have been increasingly used in prosthodontic practice for fabricating digital prostheses. Nevertheless, evidence relating to the wear resistance of denture teeth fabricated using these methods is lacking.
Purpose: The purpose of this in vitro study was to compare the wear resistance exhibited by denture teeth fabricated using 3D printing and milling technologies with prefabricated denture teeth.
Int J Biol Macromol
December 2024
School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China. Electronic address:
We provided an efficient method for preparing fluorescent materials with high specificity. Firstly, the cellulose-based aggregations with adjustable morphologies and sizes were obtained by cross-linking copolymerization and self-assembly. Then, after encapsulating the fluorescein isothiocyanate (FITC) into the hydrophobic microregions of the cellulose-based aggregations by ultrasound/dialysis method, a series of cellulose-based fluorescent aggregations with different morphologies was obtained.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Materials Science & Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, China. Electronic address:
Metal oxide photocatalysts loaded with metal species are extremely important in photocatalysis. The physicochemical states of metal species, as well as the interaction between metal species and support, determine the transfer of charge carriers between the heterointerface, which has a significant impact on photocatalytic activity. Here, we prepared anatase TiO nanosheets (TIO) modified with different Ag species, including single atoms, clusters, and nanoparticles, using a ligand-mediated method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!