This study focuses on preparing a new family of organometallic surfactants based on five ion complexes, namely Co, Ni, Cu, Fe, and Mn. The first step is the preparation of 5-chloromethyl salicylaldehyde (Salen, S). The second step is the formation of sodium alkoxide of Pluronic F-127 (AP). The third step is the formation of the modified AP-Salen (new ligand). This ligand was reacted with the metal chlorides as mentioned earlier to obtain the organometallic surfactants (OMS) named AP-Salen-M complexes. FT-IR, H-NMR, SEM, and EDX justified the chemical structure of the as-prepared materials. The surface tension of these surfactants was measured for surfactant solutions at different concentrations to determine the CMC and calculate their surface-active properties. The interfacial tension at CMC was measured against heavy crude oil to predict the availability and use these surfactants in the enhanced oil recovery (EOR) process. From the results, this class of surfactants exhibited good surface-active properties and high efficiency on the interface adsorption; besides, they reduced the interfacial tension in the order between 10 and 10 mN m, which gives a good indication to use these surfactants in EOR application for the heavy crude oil.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693511PMC
http://dx.doi.org/10.1039/d0ra09502hDOI Listing

Publication Analysis

Top Keywords

organometallic surfactants
12
oil recovery
8
surfactants based
8
step formation
8
surface-active properties
8
interfacial tension
8
heavy crude
8
crude oil
8
surfactants
7
improving heavy
4

Similar Publications

Heterotelechelic Organometallic PEG Reagents Enable Modular Access to Complex Bioconjugates.

ACS Macro Lett

November 2024

Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.

Article Synopsis
  • - Organometallic oxidative addition complexes (OACs) are gaining attention as effective reagents for the selective modification of biomolecules by altering ligand and aryl properties to control reaction kinetics and regioselectivity.
  • - Researchers explored the use of bidentate Au(III) OACs with bulky and electron-deficient aryl substrates to successfully achieve selective -arylation using computational and experimental methods.
  • - The study successfully developed a protein-polymer OAC that performed rapid -arylation with designed ankyrin repeat proteins (DARPins) and various biologically relevant small molecules, paving the way for constructing complex biomolecular conjugates.
View Article and Find Full Text PDF

Background: Gliadins have aroused significant interest in the last decade as suitable biomaterials for food and pharmaceutical applications. In particular, the oral route is the preferred method of administration for gliadin-based formulations, due to the affinity of this biomaterial for the gut mucosa. However, up to now, this has been demonstrated only by means of in vivo or ex vivo studies.

View Article and Find Full Text PDF

Atherosclerosis-induced lethal cardiovascular disease remains a severe healthcare threat due to the limited drug efficiency and untimely prediction of high-risk events caused by inadequate target specificity of medications, incapable recognition of insensitive patients, and variable morphology of vulnerable plaques. Therefore, it is necessary to develop efficient strategies to improve the diagnosis accuracy and achieve visualized treatment of atherosclerosis. Herein, we establish an inflamed endothelium-targeted three-in-one nucleic acid nanogel system that can reverse the inflammatory state of endothelial cells (ECs) in plaques and simultaneously achieve real-time monitoring of the therapy process for efficient atherosclerosis diagnosis and treatment.

View Article and Find Full Text PDF

Micelles of poly[oligo(ethylene glycol) methacrylate] as delivery vehicles for zinc phthalocyanine photosensitizers.

Nanotechnology

September 2024

Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey.

Drug-loaded polymeric micelles have proven to be highly effective carrier systems for the efficient delivery of hydrophobic photosensitizers (PSs) in photodynamic therapy (PDT). This study introduces the micellization potential of poly(oligoethylene glycol methyl ether methacrylate) (pOEGMA) as a novel approach, utilizing the hydrophobic methacrylate segments of pOEGMA to interact with highly hydrophobic zinc phthalocyanine (ZnPc), thereby forming a potential micellar drug carrier system. The ZnPc molecule was synthesized from phthalonitrile derivatives and its fluorescence, photodegradation, and singlet oxygen quantum yields were determined in various solvents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!