Herein, we present fabrication of a novel methane sensor based on poly (3,4-ethylenedioxythiophene:poly (styrene sulfonic acid)) (p-PEDOT-PSS) and gold nanoparticles (AuNPs) treated with dimethyl sulfoxide (DMSO) and Zonyl using a spin coating technique. The nanocomposite films were further post treated with HSO to improve the charge transport mechanism. The structural and morphological features of the composites were analyzed through scanning electronic microscopy, transmission electron microscopy, Fourier transform infra-red spectroscopy, UV-Vis spectroscopy and thermogravimetric analysis. Treatment with organic solvents and post treatment of HSO significantly enhances the conductivity of the composite to 1800 S cm. The fabricated sensor shows an excellent sensing response, fast response and recovery time along with acceptable selectivity towards methane gas at ppb concentrations. Due to a simple fabrication technique, excellent conductivity, superior sensing performance and improved mechanical properties, the sensor fabricated in this study could potentially be used to detect greenhouse methane gas at low concentrations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697802PMC
http://dx.doi.org/10.1039/d1ra00994jDOI Listing

Publication Analysis

Top Keywords

methane gas
12
greenhouse methane
8
gas ppb
8
design development
4
development highly
4
highly sensitive
4
sensitive pedot-pss/aunp
4
pedot-pss/aunp hybrid
4
hybrid nanocomposite-based
4
sensor
4

Similar Publications

Estimating spatiotemporal maps of greenhouse gases (GHGs) is important for understanding climate change and developing mitigation strategies. However, current methods face challenges, including the coarse resolution of numerical models, and gaps in satellite data, making it essential to improve the spatiotemporal estimation of GHGs. This study aims to develop an advanced technique to produce high-fidelity (1 km) maps of CO and CH over the Arabian Peninsula, a highly vulnerable region to climate change.

View Article and Find Full Text PDF

The pressing necessity to mitigate climate change and decrease greenhouse gas emissions has driven the advancement of heterostructure-based photocatalysts for effective CO₂ reduction. This study introduces a novel heterojunction photocatalyst formed by integrating potassium-doped polymeric carbon nitride (KPCN) with metallic Zn₃N₂, synthesized via a microwave-assisted molten salt method. The resulting Schottky contact effectively suppresses the reverse diffusion of electrons, achieving spatial separation of photogenerated charges and prolonging their lifetime, which significantly enhances photocatalytic activity and efficiency.

View Article and Find Full Text PDF

Paddy fields are a major anthropogenic source of global methane (CH) emissions, a powerful greenhouse gas (GHG). This study aimed at gaining insights of different organic and inorganic conductive materials (CMs) - biochar, fungal melanin, and magnetite - to mitigate CH emissions, and on their influence on key microbial populations, mimicking the postharvest season throughout the degradation of rice straw in microcosms under anaerobic conditions encompassing postharvest paddy rice soils from the Ebro Delta, Spain. Results showed that fungal melanin was the most effective CM, significantly reducing CH emissions by 29 %, while biochar amendment also reduced emissions by 10 %.

View Article and Find Full Text PDF

Potential Air Quality Side-Effects of Emitting HO to Enhance Methane Oxidation as a Climate Solution.

Environ Sci Technol

January 2025

Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah 84112, United States.

Methane (CH) is a greenhouse gas with a global warming potential 81.2 times higher than carbon dioxide (CO). The intentional emission of oxidants into the atmosphere has been proposed as a geoengineering solution to accelerate the oxidation of CH to CO, thereby reducing surface warming.

View Article and Find Full Text PDF

Solar-driven dry reforming of methane (DRM) offers a milder, more cost-effective, and promising environmentally friendly pathway compared to traditional thermal catalytic DRM. Numerous studies have extensively investigated inexpensive Ni-based catalysts for application in solar-driven DRM. However, these catalysts often suffer from activity loss due to carbon accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!