Three alginates with fundamentally different block structures, poly-M, poly-G, and poly-MG, have been investigated upon ionic crosslinking with chitosan oligosaccharides (CHOS), using circular dichroism (CD), rheology, and computer simulations, supporting the previously proposed gelling principle of poly-M forming zipper-like junction zones with chitosan (match in charge distance along the two polyelectrolytes) and revealing a unique high gel strength poly-MG chitosan gelling system. CD spectroscopy revealed an increased chiroptical activity exclusively for the poly-M chitosan gelling system, indicative of induced conformational changes and higher ordered structures. Rheological measurement revealed gel strengths (' < 900 Pa) for poly-MG (1%) CHOS (0.3%) hydrogels, magnitudes of order greater than displayed by its poly-M analogue. Furthermore, the ionically crosslinked poly-MG chitosan hydrogel increased in gel strength upon the addition of salt (' < 1600 at 50 mM NaCl), suggesting a stabilization of the junction zones through hydrophobic interactions and/or a phase separation. Molecular dynamics simulations have been used to further investigate these findings, comparing interaction energies, charge distances and chain alignments. These alginates are displaying high gel strengths, are known to be fully biocompatible and have revealed a broad range of tolerance to salt concentrations present in biological systems, proving high relevance for biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697632PMC
http://dx.doi.org/10.1039/d1ra01003dDOI Listing

Publication Analysis

Top Keywords

junction zones
8
high gel
8
gel strength
8
poly-mg chitosan
8
chitosan gelling
8
gelling system
8
gel strengths
8
chitosan
7
alginate gels
4
gels crosslinked
4

Similar Publications

Deepening the Role of Pectin in the Tissue Assembly Process During Tomato Grafting.

Plants (Basel)

December 2024

Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24007 León, Spain.

Cell walls play essential roles in cell recognition, tissue adhesion, and wound response. In particular, pectins as cell-adhesive agents are expected to play a key role in the early stages of grafting. To test this premise, this study focused on examining the dynamics of the accumulation and degree of methyl-esterification of pectic polysaccharides at the graft junctions using tomato autografts as an experimental model.

View Article and Find Full Text PDF

Objective: To investigate the characteristics of three-dimensional distribution of subchondral fracture lines on the surface of the osteonecrosis femoral head, and to discuss the underlying mechanisms that contribute to its collapse.

Methods: We retrospectively analyzed computed tomography (CT) images from 75 patients (comprising a total of 77 femoral heads) diagnosed with Association Research Circulation Osseous (ARCO) stage IIIA or IIIB femoral head necrosis. The three-dimensional structures of both the femoral head and the subchondral fracture line were reconstructed and subsequently fitted into normal femoral head model.

View Article and Find Full Text PDF

The formation and performance tuning mechanism of starch-based hydrogels.

Carbohydr Polym

February 2025

College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China. Electronic address:

Starch-based hydrogels, characterized by their three-dimensional network structures, are increasingly explored for their biodegradability, low cost, and abundance of modifiable hydroxyl groups. However, a comprehensive understanding of the mechanisms behind the formation and property modulation of these hydrogels has not been systematically described. Drawing from literature of the past decade, this review provides insights into designing multifunctional starch-based hydrogels through various gelation mechanism, crosslinking strategies, and second-network structure.

View Article and Find Full Text PDF

Aims: Limb salvage surgery (LSS) is the primary treatment option for primary bone malignancy. It involves the removal of bone and tissue, followed by reconstruction with endoprosthetic replacements (EPRs) to prevent amputation. Trabecular metal (TM) collars have been developed to encourage bone ingrowth (osseointegration (OI)) into EPRs.

View Article and Find Full Text PDF

Examining macro-level traffic crashes considering nonlinear and spatiotemporal spillover effects.

Accid Anal Prev

December 2024

School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, PR China. Electronic address:

Understanding the impacts of traffic crashes is essential for safety management and proactive safety protection. Current studies often hold the assumption of linearity and spatial dependence, which may lead to underestimated results. To address these gaps, this study considers both nonlinear and spatiotemporal spillover effects to explore the intricate relationships between vehicular crashes and their influencing factors at a macro level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!