Similar Publications

Article Synopsis
  • Understanding microgel morphology is key for enhancing their functions in various applications, but traditional methods are often limited and low in efficiency.
  • A new bottom-up approach is introduced for creating unique non-spherical microgels from N-vinylcaprolactam using a specific liquid crystalline comonomer, allowing for more diverse shapes like multilobe, dumbbell, and raspberry forms.
  • By manipulating factors like LCM addition time, temperature, and solvent ratios, researchers can fine-tune microgel shapes, which are characterized using microscopy and light scattering techniques, and they show potential in solubilizing hydrophobic compounds like Nile Red.
View Article and Find Full Text PDF

The vinyl caprolactam (VCL) based microgel system has become the center of great attention due to its versatile properties. Copolymerization of VCL with an ionic monomer imparts pH responsive properties into the microgel system in addition to thermo-sensitivity. Stimuli responsive behavior of VCL-based microgels makes them prospective and appealing candidates for practical applications covering the fields of drug delivery, catalysis and optical devices.

View Article and Find Full Text PDF

Herein, the synthesis of amylose-coated, temperature-responsive poly(N-vinylcaprolactam) (VCL)-based copolymer microgels by enzyme-catalyzed grafting-from polymerization with phosphorylase b from rabbit muscle is reported. The phosphorylase is able to recognize the oligosaccharide maltoheptaose as primer and attach glucose units from the monomer glucose-1-phosphate to it, thereby forming amylose chains while releasing inorganic phosphate. Therefore, to enable the phosphorylase-catalyzed grafting-from polymerization of glucose-1-phosphate from the PVCL-based microgels, the maltoheptaose primer is covalently attached to the microgel in the first synthesis step.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!