d-Pantolactone is a key chiral intermediate for the synthesis of d-pantothenic acid and its derivatives. Biocatalytic kinetic resolution of d,l-pantoyl lactone using d-lactonase is an efficient route to synthesize d-pantolactone. In this study, we report the expression of a novel d-lactonase TSDL in host. The recombinant TSDL exhibited high hydrolysis activity and enantioselectivity toward d-pantolactone. The reaction conditions of the recombinant TSDL-catalyzed kinetic resolution of d,l-pantolactone was systematically investigated by whole cell biocatalysis. In addition, a preparative-scale reaction for bioproduction of d-pantoic acid was examined under optimized reaction conditions. This study presented an alternative enzymatic process for kinetic resolution of d,l-pantolactone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693235PMC
http://dx.doi.org/10.1039/d0ra09053kDOI Listing

Publication Analysis

Top Keywords

kinetic resolution
16
resolution dl-pantolactone
12
biocatalytic kinetic
8
reaction conditions
8
resolution
4
dl-pantolactone novel
4
novel recombinant
4
recombinant d-lactonase
4
d-lactonase d-pantolactone
4
d-pantolactone key
4

Similar Publications

Devices with a highly nonlinear resistance-voltage relationship are candidates for neuromorphic computing, which can be achieved by highly temperature dependent processes like ion migration. To explore the thermal properties of such devices, Scanning Thermal Microscopy (SThM) can be employed. However, due to the nonlinearity, the high resolution and quantitative method of AC-modulated SThM cannot readily be used.

View Article and Find Full Text PDF

Position in proton Bragg curve influences DNA damage complexity and survival in head and neck cancer cells.

Clin Transl Radiat Oncol

March 2025

Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.

Background And Purpose: Understanding the cellular and molecular effect of proton radiation, particularly the increased DNA damage complexity at the distal end of the Bragg curve, is current topic of investigation. This work aims to study clonogenic survival and DNA damage foci kinetics of a head and neck squamous cell carcinoma cell line at various positions along a double passively scattered Bragg curve. Complementary studies are conducted to gain insights into the link between cell survival variations, experimentally yielded foci and the number and complexity of double strand breaks (DSBs).

View Article and Find Full Text PDF

Whispering-gallery-mode (WGM) microresonators are typically studied for surface (bio)chemical sensing, mainly relying on small refractive index changes occurring within a nanometer range from their walls surface. This high sensitivity, reaching up to 10 refractive index unit (RIU, ∼2.5 nm/RIU and measured at a femtometer resolution) leads to broad ranges of applications, especially for biosensing purposes through the monitoring of molecular binding events.

View Article and Find Full Text PDF

Drug discovery continues to face a staggering 90% failure rate, with many setbacks occurring during late-stage clinical trials. To address this challenge, there is an increasing focus on developing and evaluating new technologies to enhance the "design" and "test" phases of antibody-based drugs (e.g.

View Article and Find Full Text PDF

The contamination of water with dyes stemming from the discharge of industrial waste poses significant environmental risks and health concerns. In this study, the phytoremediation potential of the wetland plant was investigated (as a function of plant biomass, pH, contact time, and initial dye concentration) for the removal of methylene blue and methyl red dyes from wastewater. The experimental adsorption capacities under the optimum conditions were found to be 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!