As one of the most important and fruitful methods, supramolecular self-assembly has a significant advantage in designing and fabricating functional soft materials with various nanostructures. In this research, a low-molecular-weight gelator, ,'-di(pyridin-4-yl)-pyridine-3,5-dicarboxamide (PDA-N4), was synthesized and used to construct self-assembled gels a solvent-mediated strategy. It was found that PDA-N4 could form supramolecular gels in mixed solvents of water and DMSO (or DMF) at high water fraction (greater than or equal to 50%). By decreasing the water fraction from 50% to 30%, the gel, suspension and solution phases appeared successively, indicating that self-assembled aggregates could be efficiently modulated water content in organic solvents. Moreover, the as-prepared PDA-N4 supramolecular gels not only displayed solid-like behavior, and pH- and thermo-reversible characteristics, but also showed a solution-gel-crystal transition with the extension of aging time. Further analyses suggested that both the crystal and gel had similar assembled structures. The intermolecular hydrogen bonding between amide groups and the π-π stacking interactions between pyridine groups played key roles in gel formation. Additionally, the release behavior of vitamin B12 (VB) from PDA-N4 gel (HO/DMSO, v/v = 90/10) was evaluated, and the drug controlled release process was consistent with a first-order release mechanism. The human umbilical venous endothelial cell culture results showed that the PDA-N4 xerogel has good cytocompatibility, which implied that the gels have potential biological application in tissue engineering and controlled drug release.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695936 | PMC |
http://dx.doi.org/10.1039/d1ra00647a | DOI Listing |
Methods Mol Biol
January 2025
Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT, USA.
Electrophoretic Mobility Shift Assay (EMSA) is a powerful technique for studying nucleic acid and protein interactions. This technique is based on the principle that nucleic acid-protein complex and nucleic acid migrate at different rates due to differences in size and charge. Nucleic acid and protein interactions are fundamental to various biological processes, such as gene regulation, replication, transcription, and recombination.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary.
During the experimental formation of sol-gel coatings, the colloid dispersions go through a drying process, and the structure of the coatings is formed as a result of complex chemical, colloidal, and capillary interactions. While computer simulations provide guidelines to tune and even design the nanomaterials synthesis, simulations of coating structure formation are hitherto unknown in the literature. Based on real experiments, we establish here a ReaxFF reactive force field-based molecular dynamics simulation protocol in order to investigate and determine the role of the experimental conditions on the pore structure formation in the coatings.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Periodontology, Faculty of Dentistry, Marmara University, Istanbul 34854, Turkiye. Electronic address:
The aim was to explore the efficiency of Tideglusib in bone tissue healing by carrying it with different scaffolds on rat calvarial lesions. Twentyfour male Dawley rats were utilized. Two bone defects of 5 mm in diameter were formed (n = 8).
View Article and Find Full Text PDFFood Chem
December 2024
Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China. Electronic address:
The effects of different valence metal ions on the formation of hydrogels with α-lactalbumin fibrils (ALAF) were comprehensively examined in this study. The properties of hydrogel were generally characterized with water holding capacity (WHC), rheology, texture, DSC and ICP tests. Except FeCl, it was shown that KCl, NaCl, CaCl, MgCl, NiCl, and AlCl at 90 mM could induce the formation of hydrogels with ALAF (40 mg/mL), and hydrogels formed by high valence metal salts had more good properties (viscoelasticity, WHC, and thermal stability), and the amounts of metal ions released from hydrogels with high valence salts after immersion in deionized water for 90 min were all below 10 %.
View Article and Find Full Text PDFACS Omega
December 2024
Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, Ontario, Canada.
Recently, there has been immense interest in using biodegradable polymers to replace petro-derived polymers. Poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV), which is gaining popularity due to its biodegradability, is used in developing blends and composites for a variety of applications. To enhance the miscibility between different components of a material with PHBV, functionalization of the PHBV chain can be done.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!