A potentiometric sensor, based on the glassy carbon electrode (GCE) modified with a magnetic multi-walled carbon nanotubes/cesium ion-imprinted polymer composite (MMWCNTs@Cs-IIP), is introduced for the detection of cesium(i). The IIP was synthesized using cesium ions as the template ions, chitosan as the functional monomer and glutaraldehyde as the cross-linking agent. The membrane, which was coated on the surface of the GCE, was prepared using MMWCNTs@Cs(i)-IIP as the modifier, PVC as the neutral carrier, 2-nitrophenyloctyl ether as the plasticizer and sodium tetraphenylborate as the lipophilic salt. The proposed sensor exhibited a Nernstian slope of 0.05954 V dec in a working concentration range of 1 × 10 to 1 × 10 M (mol L) with a detection limit of 4 × 10 M. The sensor exhibited high selectivity for cesium ions and was successfully applied for the determination of Cs(i) in real samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8695446 | PMC |
http://dx.doi.org/10.1039/d0ra09659h | DOI Listing |
Materials (Basel)
December 2024
Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland.
The growing demand for alkali metals (AMs), such as lithium, cesium, and rubidium, related to their wide application across various industries (e.g., electronics, medicine, aerospace, etc.
View Article and Find Full Text PDFNat Commun
January 2025
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
Monovalent salts are generally believed to stabilize DNA duplex by weakening inter-strand electrostatic repulsion. Unexpectedly, our force-induced hairpin unzipping experiments and thermal melting experiments show that LiCl, NaCl, KCl, RbCl, and CsCl at concentrations beyond ~1 M destabilize DNA, RNA, and RNA-DNA duplexes. The two types of experiments yield different changes in free energy during melting, while the results that high concentration monovalent salts destabilize duplexes are common.
View Article and Find Full Text PDFRecent years have witnessed an intense effort to unravel magnetic field effects in electrocatalysis, as they can enhance the performance of common electrocatalysts. Both experimental and theoretical studies have shown that magnetic fields may affect, among others, the macroscopic spin-orbital ordering, charge transport, bubble release, and electron transfer kinetics. This paper highlights Electrochemical Impedance Spectroscopy (EIS) as a tool to analyze and separate the effects of magnetic field on both the oxygen reduction and evolution reactions at cobalt iron oxide electrodes.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Colleges Universities Key Laboratory of Optic-Electric Chemo/Biosensing and Molecular Recognition, Guangxi Minzu University, Nanning, 530006, China.
A dual supersaturation recrystallization method was employed to synthesize water-stable, highly sensitive cesium-lead halide perovskite nanocrystals (CsPbBr PNCs). The PNCs exhibited excellent water stability, a significant photoluminescence quantum efficiency of 83.03%, along with a narrow full width at half maximum (FWHM) of 20 nm.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China. Electronic address:
Recently, hybrid capacitive deionization (HCDI) has garnered significant attention for its potential in the selective extraction of cesium (Cs) from radioactive wastewater and salt lakes, which is crucial for resolving the supply-demand imbalance of cesium resources and eliminating radioactive contamination. However, developing HCDI electrodes capable of effectively separating and extracting Cs remains a significant challenge. In this work, we proposed an innovative strategy involving the doping of inactive metal ions to develop zinc-doped manganese hexacyanoferrate (ZMFC) as an HCDI cathode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!